Name: \qquad

CSE 505, Fall 2007, Midterm Examination 1 November 2007

Please do not turn the page until everyone is ready.

Rules:

- The exam is closed-book, closed-note, except for one side of one 8.5×11 in piece of paper.
- Please stop promptly at 11:50.
- You can rip apart the pages, but please write your name on each page.
- There are $\mathbf{1 0 0}$ points total, distributed unevenly among $\mathbf{4}$ questions (which have multiple parts).

Advice:

- Read questions carefully. Understand a question before you start writing.
- Write down thoughts and intermediate steps so you can get partial credit.
- The questions are not necessarily in order of difficulty. Skip around. In particular, make sure you get to all the problems.
- If you have questions, ask.
- Relax. You are here to learn.

Name: \qquad
For your reference:

$$
\begin{aligned}
s & ::= \\
e & \text { skip }|x:=e| s ; s \mid \text { if } e s s \mid \text { while } e s \\
e & :: x|e+e| e * e \\
(c & \in\{\ldots,-2,-1,0,1,2, \ldots\}) \\
(x & \left.\in\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \ldots\right\}\right)
\end{aligned}
$$

$H ; e \Downarrow c$

$$
H_{1} ; s_{1} \rightarrow H_{2} ; s_{2}
$$

ASSIGN
$H ; x:=e \rightarrow H, x \mapsto c ;$ skip
$\overline{\text { SEQ1 }} \overline{H ; \operatorname{skip} ; s \rightarrow H ; s}$

$$
\begin{aligned}
& \text { SEQ2 } \\
& \qquad \frac{H ; s_{1} \rightarrow H^{\prime} ; s_{1}^{\prime}}{H ; s_{1} ; s_{2} \rightarrow H^{\prime} ; s_{1}^{\prime} ; s_{2}}
\end{aligned}
$$

IF1
$\frac{H ; e \Downarrow c \quad c>0}{H ; \text { if } e s_{1} s_{2} \rightarrow H ; s_{1}}$
IF2
$\frac{H ; e \Downarrow c \quad c \leq 0}{H ; \text { if } e s_{1} s_{2} \rightarrow H ; s_{2}}$
WHILE $\overline{H \text {; while } e s \rightarrow H \text {; if } e(s \text {; while } e s) \text { skip }}$

$$
\begin{aligned}
e & ::=\lambda x . e|x| \text { e e } \mid c \\
v & ::=\lambda x . e \mid c \\
\tau & ::=\text { int } \mid \tau \rightarrow \tau
\end{aligned}
$$

$e \rightarrow e^{\prime}$

$$
\overline{(\lambda x . e) v \rightarrow e[v / x]}
$$

$$
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}}
$$

$$
\frac{e_{2} \rightarrow e_{2}^{\prime}}{v e_{2} \rightarrow v e_{2}^{\prime}}
$$

$$
e\left[e^{\prime} / x\right]=e^{\prime \prime}
$$

$$
\begin{gathered}
\overline{x[e / x]=e} \\
\frac{y \neq x}{y[e / x]=y}
\end{gathered}
$$

$$
\frac{e_{1}[e / x]=e_{1}^{\prime} \quad y \neq x \quad y \notin F V(e)}{\left(\lambda y \cdot e_{1}\right)[e / x]=\lambda y \cdot e_{1}^{\prime}}
$$

$$
\frac{e_{1}[e / x]=e_{1}^{\prime} \quad e_{2}[e / x]=e_{2}^{\prime}}{\left(e_{1} e_{2}\right)[e / x]=e_{1}^{\prime} e_{2}^{\prime}}
$$

$\Gamma \vdash e: \tau$

$$
\overline{\Gamma \vdash c: \mathrm{int}} \quad \overline{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \lambda x . e: \tau_{1} \rightarrow \tau_{2}} \quad \frac{\Gamma \vdash e_{1}: \tau_{2} \rightarrow \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash e_{1} e_{2}: \tau_{1}}
$$

- If $\cdot \vdash e: \tau$ and $e \rightarrow e^{\prime}$, then $\cdot \vdash e^{\prime}: \tau$.
- If $\cdot \vdash e: \tau$, then e is a value or there exists an e^{\prime} such that $e \rightarrow e^{\prime}$.
- If $\Gamma, x: \tau^{\prime} \vdash e: \tau$ and $\Gamma \vdash e^{\prime}: \tau^{\prime}$, then $\Gamma \vdash e\left[e^{\prime} / x\right]: \tau$.

Name: \qquad

1. In this problem, we consider an expression language that is like expressions in IMP except we remove multiplication and we add a global counter. Our syntax is:

$$
e::=c|x| e+e \mid \text { next }
$$

Informally, the next expression evaluates to the current counter-value and has the side-effect of incrementing the counter value.
(a) (11 points) Give a large-step semantics for this expression language. The judgment should have the form $H ; c_{1} ; e \Downarrow c_{2} ; c$ where:

- H, e, and c are like in IMP.
- c_{1} is the value of the global counter before evaluation.
- c_{2} is the value of the global counter after evaluation.
(b) (16 points) Prove this theorem: If $H ; c_{1} ; e \Downarrow c_{2} ; c$ and $c_{1}^{\prime}>c_{1}$, then there exist c_{2}^{\prime} and c^{\prime} such that $H ; c_{1}^{\prime} ; e \Downarrow c_{2}^{\prime} ; c^{\prime}$ and $c_{2}^{\prime}>c_{2}$.
(c) (7 points) Suppose we also extend IMP statement semantics to support the global counter (so the judgment has the form $\left.H ; c ; s \rightarrow H^{\prime} ; c^{\prime} ; s^{\prime}\right)$. Argue that this theorem is false: If $H_{1} ; c_{1} ; s \rightarrow^{*}$ $H_{2} ; c_{2}$; skip and $c_{1}^{\prime}>c_{1}$, then there exist H_{2}^{\prime} and c_{2}^{\prime} such that $H ; c_{1}^{\prime} ; s \rightarrow^{*} H_{2}^{\prime} ; c_{2}^{\prime}$; skip and $c_{2}^{\prime}>c_{2}$. You do not need to give the semantic rules for statements or show a full state sequence. Just give an example showing the theorem is false and explain why informally.

Solution:

(a)

CONST	VAR	ADD $H ; c_{1} ; c_{2} \Downarrow c_{1} ; c_{2}$
$\overline{H ; c_{1} ; x \Downarrow c_{1} ; H(x)}$	$\frac{H ; e_{1} \Downarrow c^{\prime} ; c_{1} \quad H ; c^{\prime} ; e_{2} \Downarrow c^{\prime \prime} ; c_{2}}{H ; c ; e_{1}+e_{2} \Downarrow c^{\prime \prime} ; c_{1}+c_{2}}$	

NEXT

$$
\overline{H ; c ; \operatorname{next} \Downarrow c+1 ; c}
$$

(b) By induction on the derivation of $H ; c_{1} ; e \Downarrow c_{2} ; c$:

- If the derivation ends with CONST, then $c_{2}=c_{1}$ and we can use CONST to derive $H ; c_{1}^{\prime} \Downarrow c_{1}^{\prime} ; c$. Since $c_{1}^{\prime}>c_{1}=c_{2}$, letting $c_{2}^{\prime}=c_{1}^{\prime}$ (and $c^{\prime}=c$) suffices.
- If the derivation ends with VAR, then $c_{2}=c_{1}$, and we can use VAR to derive $H ; c_{1}^{\prime} \Downarrow c_{1}^{\prime} ; c$. Since $c_{1}^{\prime}>c_{1}=c_{2}$, letting $c_{2}^{\prime}=c_{1}^{\prime}$ (and $c^{\prime}=c$) suffices.
- If the derivation ends with ADD, then $e=e_{1}+e_{2}$ and there exists some c_{3}, c_{4}, and c_{5} such that $H ; c_{1} ; e_{1} \Downarrow c_{3} ; c_{4}$ and $H ; c_{3} ; e_{2} \Downarrow c_{2} ; c_{5}$. So by induction on the derivation for e_{1} there exist $c_{3}^{\prime}>c_{3}$ and c_{4}^{\prime} such that $H ; c_{1}^{\prime} ; e_{1} \Downarrow c_{3}^{\prime} ; c_{4}^{\prime}$. Since $c_{3}^{\prime}>c_{3}$, by induction on the derivation for e_{2} there exist $c_{2}^{\prime}>c_{2}$ and c_{5}^{\prime} such that $H ; c_{3}^{\prime} ; e_{2} \Downarrow c_{2}^{\prime} ; c_{5}^{\prime}$. So using ADD with $H ; c_{1}^{\prime} ; e_{1} \Downarrow c_{3}^{\prime} ; c_{4}^{\prime}$ and $H ; c_{3}^{\prime} ; e_{2} \Downarrow c_{2}^{\prime} ; c_{5}^{\prime}$ we can derive $H ; c_{1}^{\prime} ; e_{1}+e_{2} \Downarrow c_{2}^{\prime} ; c_{4}^{\prime}+c_{5}^{\prime}$ where $c_{2}^{\prime}>c_{2}$.
- If the derivation ends with next, then $c_{2}=c_{1}+1$ and we can use next to derive $H ; c_{1}^{\prime}$; next \Downarrow $c_{1}^{\prime}+1 ; c_{1}^{\prime}$. Since $c_{1}^{\prime}>c_{1}$, we know $c_{1}^{\prime}+1>c_{1}+1=c_{2}$.
(c) The essence of the problem is conditionals (or loops). For example, consider $s=$ if next skip next. If $c_{1}=0$ and $c_{1}^{\prime}=1$, then $H ; c_{1} ; s \rightarrow^{*} H ; 2$; skip and $H ; c_{1}^{\prime} ; s \rightarrow^{*} H ; 2 ;$ skip, but $2 \ngtr 2$.

Name:
(This page intentionally blank)

Name: \qquad
2. ($\mathbf{1 0}$ points) In this problem we extend IMP statements with the construct repeat $c s$. Informally, the idea is to execute $s c$ times. Here are two separate ways one might add rules to the semantics:

- First way:

$$
\frac{c>0}{H ; \text { repeat } c s \rightarrow H ;(s ; \text { repeat }(c-1) s)}
$$

$$
\frac{c \leq 0}{H ; \text { repeat } c s \rightarrow H ; \text { skip }}
$$

- Second way:

$$
\overline{H ; \text { repeat } c s \rightarrow H ;(s ; \text { if }(c-1)(\text { repeat }(c-1) s) \text { skip) }}
$$

One of these ways is wrong (in some situations) according to the informal description.
(a) Which way is wrong? Explain why it is wrong.
(b) Show how to change the wrong way to make it correct.

Solution:

(a) The second way is wrong; it always executes s at least once. If $c \leq 0$, it should not execute s any times.
(b) We can still use the idea of unrolling to an if-statement; we just cannot assume s executes at least once. This simpler approach works fine, just like for while-statements:

$$
\bar{H} \text {; repeat } c s \rightarrow H \text {; if } c(s ; \text { repeat }(c-1) s) \text { skip }
$$

Name: \qquad
3. ($\mathbf{1 8}$ points) Note there is a part (a) and part (b) to this problem.
(a) For each Caml function below (q1, q2, and q3):

- Describe in 1-2 English sentences what the function computes.
- Give the type of the function. (Hint: For all three functions, the type has one type variable.)

```
let q1 x =
        let rec g x y =
            match x with
                [] -> y
            | hd::tl -> g tl (hd::y)
        in g x []
let rec q2 f lst =
        match lst with
            [] -> []
        | hd::tl -> if f hd then hd::(q2 f tl) else q2 f tl
let q3 x g = g (g x)
```

(b) Consider this purposely complicated code that uses q3 as defined above.

```
let x = q3 2
let y z = z+z
let z = 9
let x = x y
```

After evaluating this code, what is x bound to?

Solution:

(a) - q1 takes a list and returns its reverse. It has type 'a list -> 'a list.

- q2 takes a function and a list and returns the list containing all the elements from the input list (in order) for which the function applied to the element returns true. (It's a filter.) It has type ('a -> bool) -> 'a list -> 'a list.
- q3 returns the result of applying its second argument to the result of applying its second argument to its first argument. It has type 'a -> ('a -> 'a) -> 'a.
(b) 8

Name: \qquad
4. In this problem, we consider a call-by-value lambda-calculus with very basic support for profiling: In addition to computing a value, it computes how many times an expression of the form count e is evaluated. Here is the syntax and operational semantics:

$$
e::=\lambda x . e|x| e e|c| \text { count } e
$$

$$
c ; e \rightarrow c^{\prime} ; e^{\prime}
$$

$$
\begin{array}{cc}
\overline{c ;(\lambda x . e) v \rightarrow c ; e[v / x]} & \frac{c ; e_{1} \rightarrow c^{\prime} ; e_{1}^{\prime}}{c ; e_{1} e_{2} \rightarrow c^{\prime} ; e_{1}^{\prime} e_{2}} \frac{c ; e_{2} \rightarrow c^{\prime} ; e_{2}^{\prime}}{c ; v e_{2} \rightarrow c^{\prime} ; v e_{2}^{\prime}} \\
\overline{c ; \text { count } v \rightarrow c+1 ; v} & \frac{c ; e \rightarrow c^{\prime} ; e^{\prime}}{c ; \operatorname{count} e \rightarrow c^{\prime} ; \operatorname{count} e^{\prime}}
\end{array}
$$

Given a source program e, our initial state is $0 ; e$ (i.e., the count starts at 0). A program state $c ; e$ type-checks if e type-checks (i.e., the count can be anything).
(a) (6 points) Give a typing rule for count e that is sound and not unnecessarily restrictive.
(b) ($\mathbf{1 3}$ points) State an appropriate Preservation Lemma for this language. Prove just the case(s) directly involving count e expressions.
(c) (13 points) State an appropriate Progress Lemma for this language. Prove just the case(s) directly involving count e expressions.
(d) (6 points) Give an example program that terminates in our language and would terminate if we changed function application to be call-by-name but under call-by-name it would produce a different resulting count. (Hint: This should not be difficult.)

Solution:

(a)

$$
\frac{\Gamma \vdash e: \tau}{\Gamma \vdash \text { count } e: \tau}
$$

(b) If $\cdot \vdash e: \tau$ and $c ; e \rightarrow c^{\prime} ; e^{\prime}$, then $\cdot \vdash e^{\prime}: \tau$. We can prove this by induction on the derivation of $\cdot \vdash e: \tau$. In the case we're asked to prove, the bottom of the derivation looks like:

$$
\frac{\cdot \vdash e_{0}: \tau}{\cdot \vdash \text { count } e_{0}: \tau}
$$

There are two possible ways c; count e_{0} can step to some e^{\prime}. If e_{0} is a value, then $e^{\prime}=e_{0}$ and the assumed derivation's hypothesis $\cdot \vdash e_{0}: \tau$ suffices. If e_{0} is not a value, then $e^{\prime}=$ count e_{0}^{\prime} where $c ; e_{0} \rightarrow c^{\prime} ; e_{0}^{\prime}$. So using $\cdot \vdash e_{0}: \tau$ and induction, $\cdot \vdash e_{0}^{\prime}: \tau$, so we can derive $\cdot \vdash$ count $e_{0}^{\prime}: \tau$.
(c) If $\cdot \vdash e: \tau$, then e is a value or there exists an e^{\prime} and c^{\prime} such that $c ; e \rightarrow c ; e^{\prime}$. In the case we're asked to prove the bottom of the derivation looks like:

$$
\frac{\cdot \vdash e_{0}: \tau}{\cdot \vdash \operatorname{count} e_{0}: \tau}
$$

So using $\cdot \vdash e_{0}: \tau$, by induction either e_{0} is a value or $c ; e_{0} \rightarrow c^{\prime} ; e_{0}^{\prime}$ for some c^{\prime} and e_{0}^{\prime}. If e_{0} is a value, then c; count $e_{0} \rightarrow c+1 ; e_{0}$. If $c ; e_{0} \rightarrow c^{\prime} ; \epsilon_{0}^{\prime}$, then we can derive $c ;$ count $e_{0} \rightarrow c^{\prime} ;$ count e_{0}^{\prime}.
(d) One of an infinite number of examples is (λx. 0)(count 0).

Name:
(This page intentionally blank)

