
Name:

CSE 505, Fall 2007, Midterm Examination
1 November 2007

Please do not turn the page until everyone is ready.

Rules:

• The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.

• Please stop promptly at 11:50.

• You can rip apart the pages, but please write your name on each page.

• There are 100 points total, distributed unevenly among 4 questions (which have multiple parts).

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are not necessarily in order of difficulty. Skip around. In particular, make sure you
get to all the problems.

• If you have questions, ask.

• Relax. You are here to learn.

1

Name:

For your reference:

s ::= skip | x := e | s; s | if e s s | while e s
e ::= c | x | e + e | e ∗ e

(c ∈ {. . . ,−2,−1, 0, 1, 2, . . .})
(x ∈ {x1, x2, . . . , y1, y2, . . . , z1, z2, . . . , . . .})

H ; e ⇓ c

const

H ; c ⇓ c

var

H ; x ⇓ H(x)

add
H ; e1 ⇓ c1 H ; e2 ⇓ c2

H ; e1 + e2 ⇓ c1 + c2

mult
H ; e1 ⇓ c1 H ; e2 ⇓ c2

H ; e1 ∗ e2 ⇓ c1 ∗ c2

H1 ; s1 → H2 ; s2

assign
H ; e ⇓ c

H ; x := e → H,x 7→ c ; skip

seq1

H ; skip; s → H ; s

seq2

H ; s1 → H ′ ; s′1
H ; s1; s2 → H ′ ; s′1; s2

if1
H ; e ⇓ c c > 0

H ; if e s1 s2 → H ; s1

if2
H ; e ⇓ c c ≤ 0

H ; if e s1 s2 → H ; s2

while

H ; while e s → H ; if e (s;while e s) skip

e ::= λx. e | x | e e | c
v ::= λx. e | c
τ ::= int | τ → τ

e → e′

(λx. e) v → e[v/x]
e1 → e′1

e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

e[e′/x] = e′′

x[e/x] = e

e1[e/x] = e′1 y 6= x y 6∈ FV (e)
(λy. e1)[e/x] = λy. e′1

y 6= x

y[e/x] = y

e1[e/x] = e′1 e2[e/x] = e′2
(e1 e2)[e/x] = e′1 e′2

Γ ` e : τ

Γ ` c : int Γ ` x : Γ(x)
Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

• If · ` e : τ and e → e′, then · ` e′ : τ .

• If · ` e : τ , then e is a value or there exists an e′ such that e → e′.

• If Γ, x:τ ′ ` e : τ and Γ ` e′ : τ ′, then Γ ` e[e′/x] : τ .

2

Name:

1. In this problem, we consider an expression language that is like expressions in IMP except we remove
multiplication and we add a global counter. Our syntax is:

e ::= c | x | e + e | next

Informally, the next expression evaluates to the current counter-value and has the side-effect of incre-
menting the counter value.

(a) (11 points) Give a large-step semantics for this expression language. The judgment should have
the form H; c1; e ⇓ c2; c where:

• H, e, and c are like in IMP.
• c1 is the value of the global counter before evaluation.
• c2 is the value of the global counter after evaluation.

(b) (16 points) Prove this theorem: If H; c1; e ⇓ c2; c and c′1 > c1, then there exist c′2 and c′ such
that H; c′1; e ⇓ c′2; c

′ and c′2 > c2.

(c) (7 points) Suppose we also extend IMP statement semantics to support the global counter (so
the judgment has the form H; c; s → H ′; c′; s′). Argue that this theorem is false: If H1; c1; s →∗

H2; c2; skip and c′1 > c1, then there exist H ′
2 and c′2 such that H; c′1; s →∗ H ′

2; c
′
2; skip and c′2 > c2.

You do not need to give the semantic rules for statements or show a full state sequence. Just give
an example showing the theorem is false and explain why informally.

Solution:

(a)

const

H; c1; c2 ⇓ c1; c2

var

H; c1;x ⇓ c1;H(x)

add
H; c; e1 ⇓ c′; c1 H; c′; e2 ⇓ c′′; c2

H; c; e1 + e2 ⇓ c′′; c1 + c2

next

H; c; next ⇓ c + 1; c

(b) By induction on the derivation of H; c1; e ⇓ c2; c:

• If the derivation ends with const, then c2 = c1 and we can use const to derive H; c′1 ⇓ c′1; c.
Since c′1 > c1 = c2, letting c′2 = c′1 (and c′ = c) suffices.

• If the derivation ends with var, then c2 = c1, and we can use var to derive H; c′1 ⇓ c′1; c.
Since c′1 > c1 = c2, letting c′2 = c′1 (and c′ = c) suffices.

• If the derivation ends with add, then e = e1+e2 and there exists some c3, c4, and c5 such that
H; c1; e1 ⇓ c3; c4 and H; c3; e2 ⇓ c2; c5. So by induction on the derivation for e1 there exist
c′3 > c3 and c′4 such that H; c′1; e1 ⇓ c′3; c

′
4. Since c′3 > c3, by induction on the derivation for

e2 there exist c′2 > c2 and c′5 such that H; c′3; e2 ⇓ c′2; c
′
5. So using add with H; c′1; e1 ⇓ c′3; c

′
4

and H; c′3; e2 ⇓ c′2; c
′
5 we can derive H; c′1; e1 + e2 ⇓ c′2; c

′
4 + c′5 where c′2 > c2.

• If the derivation ends with next, then c2 = c1+1 and we can use next to derive H; c′1; next ⇓
c′1 + 1; c′1. Since c′1 > c1, we know c′1 + 1 > c1 + 1 = c2.

(c) The essence of the problem is conditionals (or loops). For example, consider s = if next skip next.
If c1 = 0 and c′1 = 1, then H; c1; s →∗ H; 2; skip and H; c′1; s →∗ H; 2; skip, but 2 6> 2.

3

Name:
(This page intentionally blank)

4

Name:

2. (10 points) In this problem we extend IMP statements with the construct repeat c s. Informally, the
idea is to execute s c times. Here are two separate ways one might add rules to the semantics:

• First way:

c > 0
H; repeat c s → H; (s; repeat (c− 1) s)

c ≤ 0
H; repeat c s → H; skip

• Second way:

H; repeat c s → H; (s; if (c− 1) (repeat (c− 1) s) skip)

One of these ways is wrong (in some situations) according to the informal description.

(a) Which way is wrong? Explain why it is wrong.

(b) Show how to change the wrong way to make it correct.

Solution:

(a) The second way is wrong; it always executes s at least once. If c ≤ 0, it should not execute s any
times.

(b) We can still use the idea of unrolling to an if-statement; we just cannot assume s executes at least
once. This simpler approach works fine, just like for while-statements:

H; repeat c s → H; if c (s; repeat (c− 1) s) skip

5

Name:

3. (18 points) Note there is a part (a) and part (b) to this problem.

(a) For each Caml function below (q1, q2, and q3):

• Describe in 1–2 English sentences what the function computes.
• Give the type of the function. (Hint: For all three functions, the type has one type variable.)

let q1 x =
let rec g x y =
match x with
[] -> y

| hd::tl -> g tl (hd::y)
in g x []

let rec q2 f lst =
match lst with
[] -> []

| hd::tl -> if f hd then hd::(q2 f tl) else q2 f tl

let q3 x g = g (g x)

(b) Consider this purposely complicated code that uses q3 as defined above.

let x = q3 2
let y z = z+z
let z = 9
let x = x y

After evaluating this code, what is x bound to?

Solution:

(a) • q1 takes a list and returns its reverse. It has type ’a list -> ’a list.
• q2 takes a function and a list and returns the list containing all the elements from the input

list (in order) for which the function applied to the element returns true. (It’s a filter.) It
has type (’a -> bool) -> ’a list -> ’a list.

• q3 returns the result of applying its second argument to the result of applying its second
argument to its first argument. It has type ’a -> (’a -> ’a) -> ’a.

(b) 8

6

Name:

4. In this problem, we consider a call-by-value lambda-calculus with very basic support for profiling: In
addition to computing a value, it computes how many times an expression of the form count e is
evaluated. Here is the syntax and operational semantics:

e ::= λx. e | x | e e | c | count e

c; e → c′; e′

c; (λx. e) v → c; e[v/x]
c; e1 → c′; e′1

c; e1 e2 → c′; e′1 e2

c; e2 → c′; e′2
c; v e2 → c′; v e′2

c; count v → c + 1; v
c; e → c′; e′

c; count e → c′; count e′

Given a source program e, our initial state is 0; e (i.e., the count starts at 0). A program state c; e
type-checks if e type-checks (i.e., the count can be anything).

(a) (6 points) Give a typing rule for count e that is sound and not unnecessarily restrictive.
(b) (13 points) State an appropriate Preservation Lemma for this language. Prove just the case(s)

directly involving count e expressions.
(c) (13 points) State an appropriate Progress Lemma for this language. Prove just the case(s)

directly involving count e expressions.
(d) (6 points) Give an example program that terminates in our language and would terminate if

we changed function application to be call-by-name but under call-by-name it would produce a
different resulting count. (Hint: This should not be difficult.)

Solution:

(a)

Γ ` e : τ

Γ ` count e : τ

(b) If · ` e : τ and c; e → c′; e′, then · ` e′ : τ . We can prove this by induction on the derivation of
· ` e : τ . In the case we’re asked to prove, the bottom of the derivation looks like:

· ` e0 : τ

· ` count e0 : τ

There are two possible ways c; count e0 can step to some e′. If e0 is a value, then e′ = e0 and the
assumed derivation’s hypothesis · ` e0 : τ suffices. If e0 is not a value, then e′ = count e′0 where
c; e0 → c′; e′0. So using · ` e0 : τ and induction, · ` e′0 : τ , so we can derive · ` count e′0 : τ .

(c) If · ` e : τ , then e is a value or there exists an e′ and c′ such that c; e → c; e′. In the case we’re
asked to prove the bottom of the derivation looks like:

· ` e0 : τ

· ` count e0 : τ

So using · ` e0 : τ , by induction either e0 is a value or c; e0 → c′; e′0 for some c′ and e′0. If e0 is a
value, then c; count e0 → c + 1; e0. If c; e0 → c′; e′0, then we can derive c; count e0 → c′; count e′0.

(d) One of an infinite number of examples is (λx. 0)(count 0).

7

Name:
(This page intentionally blank)

8

