Where we are
- Done: Caml tutorial, “IMP” syntax, structural induction
- Now: Operational semantics for our little "IMP" language
 - Most of what you need for Homework 1
 - (But Problem 4 requires proofs over semantics)

Outline
- Semantics for expressions
 1. Informal idea; the need for heaps
 2. Definition of heaps
 3. The evaluation judgment (a relation form)
 4. The evaluation inference rules (the relation definition)
 5. Using inference rules
 - Derivation trees as interpreters
 - Or as proofs about expressions
 6. Metatheory: Proofs about the semantics
- Then semantics for statements
 - ...

Informal idea
Given \(e \), what \(c \) does it evaluate to?
\[
1 + 2 \quad x + 2
\]
It depends on the values of variables (of course)

Use a heap \(H \) for a total function from variables to constants
- Could use partial functions, but then \(\exists H \) and \(e \) for which there is no \(c \)

We’ll define a relation over triples of \(H, e, \) and \(c \)
- Will turn out to be function if we view \(H \) and \(e \) as inputs and \(c \) as output
- With our metalanguage, easier to define a relation and then prove it is a function (if, in fact, it is)

Heaps
\[
H ::= \cdot \mid H, x \mapsto c
\]
A lookup-function for heaps:
\[
H(x) = \begin{cases}
 c & \text{if } H = H', x \mapsto c \\
 H'(x) & \text{if } H = H', y \mapsto c' \text{ and } y \neq x \\
 0 & \text{if } H = \cdot
\end{cases}
\]
- Last case avoids “errors” (makes function total)

“What heap to use” will arise in the semantics of statements
- For expression evaluation, “we are given an \(H \)"
The judgment

We will write: \[H ; e \downarrow c \]

to mean, "\(e \) evaluates to \(c \) under heap \(H \)"

It is just a relation on triples of the form \((H, e, c)\)

We just made up metasyntax \(H ; e \downarrow c \) to follow PL convention
and to distinguish it from other relations

We can write: \(\cdot, x \mapsto \cdot \downarrow 3 \); \[x + y \downarrow 3 \]

which will turn out to be true
(this triple will be in the relation we define)

Or: \(\cdot, x \mapsto \cdot \downarrow 6 \);

which will turn out to be false
(this triple will not be in the relation we define)

Inference rules

\[
\begin{align*}
\text{CONST} & & \text{VAR} \\
H ; e \downarrow c & & H ; x \downarrow H(x) \\
\text{ADD} & & \text{MULT} \\
H ; e_1 \downarrow c_1 & \quad H ; e_2 \downarrow c_2 & \quad H ; e_1 + e_2 \downarrow c_1 + c_2 \\
H ; e_1 + e_2 \downarrow c_1 + c_2 & \\
\end{align*}
\]

Top: hypotheses

Bottom: conclusion (read first)

By definition, if all hypotheses hold, then the conclusion holds

Each rule is a schema you “Instantiate consistently”

- So rules “work” “for all” \(H, c, e_1, \) etc.
- But “each” \(e_1 \) has to be the “same” expression

Instantiating rules

Example instantiation:

\[
\begin{align*}
\cdot, y \mapsto \cdot \downarrow 4 ; 3 + y \downarrow 7 & \quad \cdot, y \mapsto \cdot \downarrow 4 ; 5 \downarrow 5 \\
\cdot, y \mapsto \cdot \downarrow 4 ; (3 + y) + 5 \downarrow 12 \\
\end{align*}
\]

Instantiates:

\[
\begin{align*}
\text{ADD} & \quad H ; e_1 \downarrow c_1 & \quad H ; e_2 \downarrow c_2 \\
H ; e_1 + e_2 \downarrow c_1 + c_2 & \\
\end{align*}
\]

with

\[
\begin{align*}
H & = \cdot, y \mapsto \cdot \downarrow 4 \\
e_1 & = (3 + y) \\
c_1 & = 7 \\
e_2 & = 5 \\
c_2 & = 5 \\
\end{align*}
\]

Back to relations

So what relation do our inference rules define?

- Start with empty relation (no triples) \(R_0 \)
- Let \(R_i \) be \(R_{i-1} \) union all \(H ; e \downarrow c \) such that we can instantiate some inference rule to have conclusion \(H ; e \downarrow c \)
 and all hypotheses in \(R_{i-1} \)
- So \(R_i \) is all triples at the bottom of height-\(j \) complete derivations for \(j \leq i \)
- \(R_\infty \) is the relation we defined
 - All triples at the bottom of complete derivations

For the math folks: \(R_\infty \) is the smallest relation closed under the inference rules

Derivations

A (complete) derivation is a tree of instantiations with axioms at the leaves

Example:

\[
\begin{align*}
\cdot, y \mapsto \cdot \downarrow 4 ; 3 \downarrow 3 & \quad \cdot, y \mapsto \cdot \downarrow 4 ; y \downarrow 4 \\
\cdot, y \mapsto \cdot \downarrow 4 ; 3 + y \downarrow 7 & \quad \cdot, y \mapsto \cdot \downarrow 4 ; 5 \downarrow 5 \\
\cdot, y \mapsto \cdot \downarrow 4 ; (3 + y) + 5 \downarrow 12 & \\
\end{align*}
\]

By definition, \(H ; e \downarrow c \) if there exists a derivation with \(H ; e \downarrow c \) at the root

What are these things?

We can view the inference rules as defining an interpreter

- Complete derivation shows recursive calls to the “evaluate expression” function
- Recursive calls from conclusion to hypotheses
- Syntax-directed means the interpreter need not “search”

- See Caml code in Homework 1

Or we can view the inference rules as defining a proof system

- Complete derivation proves facts from other facts starting with axioms
- Facts established from hypotheses to conclusions
Some theorems

- Progress: For all H and e, there exists a c such that $H; e \Downarrow c$.
- Determinacy: For all H and e, there is at most one c such that $H; e \Downarrow c$.

We rigged it that way...
what would division, undefined-variables, or `gettime()` do?
Proofs are by induction on the the structure (i.e., height) of the expression e.

On to statements

A statement doesn’t produce a constant.
It produces a new, possibly-different heap.
- If it terminates

We could define $H_1; s \Downarrow H_2$
- Would be a partial function from H_1 and s to H_2
- Works fine; could be a homework problem

Instead we’ll define a “small-step” semantics and then “iterate” to “run the program”

$$H_1; s_1 \rightarrow H_2; s_2$$

Statement semantics

$$H_1; s_1 \rightarrow H_2; s_2$$

ASSIGN

$H; e \Downarrow c$

$H; x := e \rightarrow H; x \rightarrow c; \text{skip}$

SEQ1

$H; \text{skip}; s \rightarrow H; s$

SEQ2

$H; s_1 \rightarrow H'; s_1'$

$H; s_1; s_2 \rightarrow H'; s_1'; s_2$

IF1

$H; e \Downarrow c$ $c > 0$

$H; \text{if } s_1 s_2 \rightarrow H; s_1$

IF2

$H; e \Downarrow c$ $c < 0$

$H; \text{if } s_1 s_2 \rightarrow H; s_2$

Program semantics

Defined $H; s \rightarrow H'; s'$, but what does “s” mean/do?

Our machine iterates: $H_1; s_1 \rightarrow H_2; s_2 \rightarrow H_3; s_3 \ldots$,
with each step justified by a complete derivation using our single-step statement semantics

Let $H_1; s_1 \rightarrow^n H_2; s_2$ mean “becomes after n steps”

Let $H_1; s_1 \rightarrow^* H_2; s_2$ mean “becomes after 0 or more steps”

Pick a special “answer” variable `ans`

The program s produces c if $\cdot; s \rightarrow^* H; \text{skip}$ and $H(\text{ans}) = c$

Does every s produce a c?

Example program execution

```plaintext
x := 3; (y := 1; while x (y := y * x; x := x - 1))
```

Let’s write some of the state sequence. You can justify each step with a full derivation.
Let $s = (y := y * x; x := x - 1)$.

```
; x := 3; y := 1; while x s
\rightarrow ; x \mapsto 3; \text{skip}; y := 1; while x s
\rightarrow ; x \mapsto 3; y := 1; while x s
\rightarrow^2 ; x \mapsto 3, y \mapsto 1; while x s
\rightarrow ; x \mapsto 3, y \mapsto 1; if x (s; while x s) skip
\rightarrow ; x \mapsto 3, y \mapsto 1; y := y * x; x := x - 1; while x s
```
Continued...

→^2 ., x → 3, y → 1, y → 3; x := x−1; while x s
→^2 ., x → 3, y → 1, y → 3, x → 2; while x s
→ . . , y → 3, x → 2; if x (s; while x s) skip

... → . . , y → 6, x → 0; skip

Establishing Properties

We can prove a property of a terminating program by “running” it

Example: Our last program terminates with x holding 0

We can prove a program diverges, i.e., for all H and n, · ; s →^n H ; skip cannot be derived

Example: while 1 skip

By induction on n, but requires a stronger induction hypothesis

More General Proofs

We can prove properties of executing all programs (satisfying another property)

Example: If H and s have no negative constants and H ; s → H' ; s', then H' and s' have no negative constants.

Example: If for all H, we know s_1 and s_2 terminate, then for all H, we know H;(s_1; s_2) terminates.

Where we are

Defined H ; e ↓ c and H ; s → H' ; s' and extended the latter to give s a meaning

- The way we did expressions is “large-step operational semantics”
- The way we did statements is “small-step operational semantics”
- So now you have seen both

Definition by interpretation: program means what an interpreter (written in a metalanguage) says it means

- Interpreter represents a (very) abstract machine that runs code

Large-step does not distinguish errors and divergence

- But we defined IMP to have no errors
- And expressions never diverge