CSE505 Graduate Programming Languages: Type Safety for STLC with Constants

Most of this is available in the slides. However, it can help to see it all in one place.

Syntax

\[
\begin{align*}
 e ::=& \ c \mid \lambda x.\ e \mid x \mid e\ e \\
 v ::=& \ c \mid \lambda x.\ e \\
 \tau ::=& \ \text{int} \mid \tau \rightarrow \tau \\
 \Gamma ::=& \ \cdot \mid \Gamma, x: \tau
\end{align*}
\]

Evaluation Rules (a.k.a. Dynamic Semantics)

\[
e \rightarrow e'
\]

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premise</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-APPLY</td>
<td>((\lambda x.\ e)\ v \rightarrow e[v/x])</td>
<td>(e \rightarrow e')</td>
</tr>
<tr>
<td>E-App1</td>
<td>(e_1 \rightarrow e'_1)</td>
<td>(e_1 \ e_2 \rightarrow e'_1 \ e_2)</td>
</tr>
<tr>
<td>E-App2</td>
<td>(e_2 \rightarrow e'_2)</td>
<td>(v \ e_2 \rightarrow v \ e'_2)</td>
</tr>
</tbody>
</table>

Typing Rules (a.k.a. Static Semantics)

\[
\Gamma \vdash e : \tau
\]

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premise</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-Const</td>
<td>(\Gamma \vdash c : \text{int})</td>
<td>(\Gamma \vdash c : \tau)</td>
</tr>
<tr>
<td>T-Var</td>
<td>(\Gamma \vdash x : \Gamma(x))</td>
<td>(\Gamma, x : \tau_1 \vdash e : \tau_2) \quad x \not\in \text{Dom}(\Gamma)</td>
</tr>
<tr>
<td>T-Fun</td>
<td>(\Gamma \vdash \lambda x.\ e : \tau_1 \rightarrow \tau_2)</td>
<td>(\Gamma \vdash \lambda x.\ e : \tau_1 \rightarrow \tau_2)</td>
</tr>
<tr>
<td>T-App</td>
<td>(\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1) \quad \Gamma \vdash e_2 : \tau_2)</td>
<td>(\Gamma \vdash e_1 \ e_2 : \tau_1)</td>
</tr>
</tbody>
</table>

Type Soundness

Theorem (Type Soundness). If \(\cdot \vdash e : \tau\) and \(e \rightarrow^* e'\), then either \(e'\) is a value or there exists an \(e''\) such that \(e' \rightarrow e''\).
Proof

The Type Soundness Theorem follows as a simple corollary to the Progress and Preservation Theorems stated and proven below: Given the Preservation Theorem, a trivial induction on the number of steps taken to reach \(e' \) from \(e \) establishes that \(\cdot \vdash e' : \tau \). Then the Progress Theorem ensures \(e' \) is a value or can step to some \(e'' \).

We need the following lemma for our proof of Progress, below.

Lemma (Canonical Forms). If \(\cdot \vdash v : \tau \), then

1. If \(\tau \) is int, then \(v \) is a constant, i.e., some \(c \).
2. If \(\tau \) is \(\tau_1 \rightarrow \tau_2 \), then \(v \) is a lambda, i.e., \(\lambda x. e \) for some \(x \) and \(e \).

Canonical Forms. The proof is by inspection of the typing rules.

1. If \(\tau \) is int, then the only rule which lets us give a value this type is \(\text{T-Const} \).
2. If \(\tau \) is \(\tau_1 \rightarrow \tau_2 \), then the only rule which lets us give a value this type is \(\text{T-Fun} \).

Theorem (Progress). If \(\cdot \vdash e : \tau \), then either \(e \) is a value or there exists some \(e' \) such that \(e \rightarrow e' \).

Progress. The proof is by induction on (the height of) the derivation of \(\cdot \vdash e : \tau \), proceeding by cases on the bottommost rule used in the derivation.

- **T-Const** \(e \) is a constant, which is a value, so we are done.
- **T-Var** Impossible, as \(\Gamma \) is \(\cdot \).
- **T-Fun** \(e \) is \(\lambda x. e' \), which is a value, so we are done.
- **T-App** \(e \) is \(e_1 \, e_2 \).

By inversion, \(\cdot \vdash e_1 : \tau' \rightarrow \tau \) and \(\cdot \vdash e_2 : \tau' \) for some \(\tau' \).

If \(e_1 \) is not a value, then \(\cdot \vdash e_1 : \tau' \rightarrow \tau \) and the induction hypothesis ensures \(e_1 \rightarrow e'_1 \) for some \(e'_1 \). Therefore, by \(\text{E-App1} \), \(e_1 \, e_2 \rightarrow e'_1 \, e_2 \).

Else \(e_1 \) is a value. If \(e_2 \) is not a value, then \(\cdot \vdash e_2 : \tau' \) and our induction hypothesis ensures \(e_2 \rightarrow e'_2 \) for some \(e'_2 \). Therefore, by \(\text{E-App2} \), \(e_1 \, e_2 \rightarrow e_1 \, e'_2 \).

Else \(e_1 \) and \(e_2 \) are values. Then \(\cdot \vdash e_1 : \tau' \rightarrow \tau \) and the Canonical Forms Lemma ensures \(e_1 \) is some \(\lambda x. e' \). And \((\lambda x. e') \, e_2 \rightarrow e'[e_2/x] \) by \(\text{E-Apply} \), so \(e_1 \, e_2 \) can take a step.

\(\square \)
We will need the following lemma for our proof of Preservation, below. Actually, in the
proof of Preservation, we need only a Substitution Lemma where \(\Gamma \) is \(\cdot \), but proving the
Substitution Lemma itself requires the stronger induction hypothesis using any \(\Gamma \).

Lemma (Substitution). If \(\Gamma, x:\tau' \vdash e : \tau \) and \(\Gamma \vdash e' : \tau' \), then \(\Gamma \vdash e[e'/x] : \tau \).

To prove this lemma, we will need the following two technical lemmas, which we will
assume without proof (they’re not that difficult).

Lemma (Weakening). If \(\Gamma \vdash e : \tau \) and \(x \notin \text{Dom}(\Gamma) \), then \(\Gamma, x:\tau' \vdash e : \tau \).

Lemma (Exchange). If \(\Gamma, x:\tau_1, y:\tau_2 \vdash e : \tau \) and \(y \neq x \), then \(\Gamma, y:\tau_2, x:\tau_1 \vdash e : \tau \).

Now we prove Substitution.

Substitution. The proof is by induction on the derivation of \(\Gamma, x:\tau' \vdash e : \tau \). There are four
cases. In all cases, we know \(\Gamma \vdash e' : \tau' \) by assumption.

T-Const \(e \) is \(c \), so \(c[e'/x] \) is \(c \). By **T-Const**, \(\Gamma \vdash c : \text{int} \).

T-Var \(e \) is \(y \) and \(\Gamma, x:\tau' \vdash y : \tau \).

If \(y \neq x \), then \(y[e'/x] \) is \(y \). By inversion on the typing rule, we know that \((\Gamma, x:\tau')(y) = \tau \). Since \(y \neq x \), we know that \(\Gamma(y) = \tau \). So by **T-Var**, \(\Gamma \vdash y : \tau \).

If \(y = x \), then \(y[e'/x] \) is \(e' \). \(\Gamma, x:\tau' \vdash x : \tau \), so by inversion, \((\Gamma, x:\tau')(x) = \tau, \) so \(\tau = \tau' \).

We know \(\Gamma \vdash e' : \tau' \), which is exactly what we need.

T-App \(e \) is \(e_1 e_2 \), so \(e[e'/x] \) is \((e_1[e'/x]) \) \((e_2[e'/x]) \).

We know \(\Gamma, x:\tau' \vdash e_1 e_2 : \tau_1 \), so, by inversion on the typing rule, we know
\(\Gamma, x:\tau' \vdash e_1 : \tau_2 \rightarrow \tau_1 \) and \(\Gamma, x:\tau' \vdash e_2 : \tau_2 \) for some \(\tau_2 \).

Therefore, by induction, \(\Gamma \vdash e_1[e'/x] : \tau_2 \rightarrow \tau_1 \) and \(\Gamma \vdash e_2[e'/x] : \tau_2 \).

Given these, **T-App** lets us derive \(\Gamma \vdash (e_1[e'/x]) (e_2[e'/x]) : \tau_1 \).

So by the definition of substitution \(\Gamma \vdash (e_1 e_2)[e'/x] : \tau_1 \).

T-Fun \(e \) is \(\lambda y. e_b \), so \(e[e'/x] \) is \(\lambda y. (e_b[e'/x]) \).

We can \(\alpha \)-convert \(\lambda y. e_b \) to ensure \(y \notin \text{Dom}(\Gamma) \) and \(y \neq x \).

We know \(\Gamma, x:\tau' \vdash \lambda y. e_b : \tau_1 \rightarrow \tau_2 \), so, by inversion on the typing rule, we know
\(\Gamma, x:\tau', y:\tau_1 \vdash e_b : \tau_2 \).

By Exchange, we know that \(\Gamma, y:\tau_1, x:\tau' \vdash e_b : \tau_2 \).

By Weakening, we know that \(\Gamma, y:\tau_1 \vdash e' : \tau' \).

We have rearranged the two typing judgments so that our induction hypothesis applies
(using \(\Gamma, y:\tau_1 \) for the typing context called \(\Gamma \) in the statement of the lemma), so, by
induction, \(\Gamma, y:\tau_1 \vdash e_b[e'/x] : \tau_2 \).

Given this, **T-Fun** lets us derive \(\Gamma \vdash \lambda y. e_b[e'/x] : \tau_1 \rightarrow \tau_2 \).

So by the definition of substitution, \(\Gamma \vdash (\lambda y. e_b)[e'/x] : \tau_1 \rightarrow \tau_2 \).
Theorem (Preservation). If $\cdot \vdash e : \tau$ and $e \rightarrow e'$, then $\cdot \vdash e' : \tau$.

Preservation. The proof is by induction on the derivation of $\cdot \vdash e : \tau$. There are four cases.

T-Const e is c. This case is impossible, as there is no e' such that $c \rightarrow e'$.

T-Var e is x. This case is impossible, as x cannot be typechecked under the empty context.

T-Fun e is $\lambda x. e_b$. This case is impossible, as there is no e' such that $\lambda x. e_b \rightarrow e'$.

T-App e is $e_1 e_2$, so $\cdot \vdash e_1 e_2 : \tau$.

By inversion on the typing rule, $\cdot \vdash e_1 : \tau_2 \rightarrow \tau$ and $\cdot \vdash e_2 : \tau_2$ for some τ_2. There are three possible rules for deriving $e_1 e_2 \rightarrow e'$.

- **E-App1** Then $e' = e_1' e_2$ and $e_1 \rightarrow e_1'$.

 By $\cdot \vdash e_1 : \tau_2 \rightarrow \tau$, $e_1 \rightarrow e_1'$, and induction, $\cdot \vdash e_1' : \tau_2 \rightarrow \tau$.

 Using this and $\cdot \vdash e_2 : \tau_2$, T-App lets us derive $\cdot \vdash e_1' e_2 : \tau$.

- **E-App2** Then $e' = e_1 e_2'$ and $e_2 \rightarrow e_2'$.

 By $\cdot \vdash e_2 : \tau_2$, $e_2 \rightarrow e_2'$, and induction $\cdot \vdash e_2' : \tau_2$.

 Using this and $\cdot \vdash e_1 : \tau_2 \rightarrow \tau$, T-App lets us derive $\cdot \vdash e_1' e_2' : \tau$.

- **E-Apply** Then e_1 is $\lambda x. e_b$ for some x and e_b, and $e' = e_b[e_2/x]$.

 By inversion of the typing of $\cdot \vdash e_1 : \tau_2 \rightarrow \tau$, we have $\cdot, x : \tau_2 \vdash e_b : \tau$.

 This and $\cdot \vdash e_2 : \tau_2$ lets us use the Substitution Lemma to conclude $\cdot \vdash e_b[e_2/x] : \tau$.

□