
CSE505 Concepts of Programming Languages, Assignment 4
Due: Tuesday 28 February 2012, 11:00PM

Code for problem 2 is on the course website. Code for problem 5 will be emailed to you (not posted because
it solves large parts of homework 3).

1. (Types for Continuations) Recall how we added first-class continuations to the lambda-calculus with
evaluation-context semantics:

e ::= . . . | letcc x. e | throw e e | cont E
v ::= . . . | cont E
E ::= . . . | throw E e | throw v E

E[letcc x. e]→ E[(λx. e)(cont E)]

E[throw (cont E′) v]→ E′[v]

Extend the simply-typed lambda-calculus with typing rules for these new constructs. Your rules should
be sound and not unreasonably restrictive. Assume we extend the type system with types of the form
τ cont. The type τ cont should describe expressions that evaluate to cont E for some E such that E[v]
is well-typed for any v with type τ . (We don’t care what type E[v] has as long as it has some type.)

Hint: These three rules are enough given the right hypotheses:

???

Γ ` letcc x. e : τ

???

Γ ` throw e1 e2 : τ

???

Γ ` cont E : τ cont

2. (Manual Continuation-Passing Style) In this problem you will reimplement the large-step, environment-
based interpreter and the type-checker from homework 3. Your reimplementations should always use
a constant amount of stack space regardless of how big a program they evaluate or type-check. To
do so, use the idiom of continuation passing. Note that you are manually using continuation-passing
style to implement the interpreter and type-checker; you are not applying a CPS transformation to
the program being type-checked and evaluated.

• In the provided code, complete the definition of problem2/interpret, which should have type
exp -> (exp * heap) option where the result Some (v,h) carries the final value and heap and
the result None indicates a run-time error occurred. Two cases of the tail-recursive helper function
are provided to you. This helper function should never raise an exception: it should return None

or invoke the continuation it is passed. Hints:

– There is no reason to use the Some constructor in this helper function.

– It is probably easiest to copy parts of your solution to homework 3 and then modify them.

• In the provided code, complete the definition of typecheck, which should have type exp -> typ option

where the result Some typ carries the type of the entire program and None indicates a type-error
was found. You need to define a helper function that, like the helper function in part (a), takes
a function as an extra argument that serves as a continuation.

3. (References and Subtyping) Consider a simply-typed lambda-calculus including mutation (as defined in
homework 3), records, and subtyping (as defined in lecture). In other words, it has mutable references
and immutable records, plus all the subtyping rules considered in lecture. This “combined language”
has no subtyping rule for reference types yet (see below).

(a) Write an inference rule allowing covariant subtyping for reference types. Show this rule is unsound.
To show a rule is unsound, assume the language without the rule is sound (which it is). Then
give an example program, show that the program typechecks using the rule, and that evaluating
the program can get stuck.

1

(b) Write an inference rule allowing contravariant subtyping for reference types. Show this rule is
unsound.

(c) Write an inference rule allowing invariant subtyping for reference types. Invariant subtyping
means it must be covariant and contravariant. This rule is sound, but you do not have to show it.
However, show that this rule is not admissable (i.e., it allows programs to typecheck that could
not typecheck before). Keep in mind our language already has reflexive subtyping, so we can
already derive τ ≤ τ for all τ .

4. (Sums and Subtyping) Consider a typed λ-calculus with a more flexible version of sum types than
considered in lecture:

• There are an infinite number of constructors, not just A and B. Let C range over constructors.
So an example expression is C7 (λx. x).

• A single sum type +{C1:τ1, . . . , Cn:τn} can list any finite number of constructors and the types
of the values they carry. So one example type would be +{C3:int, C7:int → int, C2:int}. Like in
Caml, the order of constructors is not significant. Unlike in Caml, we are using structural typing
and different types can use the same constructors (with possibly different types they carry).

• As you should expect, a match expression can have any finite number of branches, with a different
constructor for each branch. Informally (it can be formalized), a match expression has type τ if
(1) the matched expression has type +{C1:τ1, . . . , Cn:τn}, (2) for each Ci in the type there is a
branch of the form Ci xi → ei where ei has type τ assuming xi has type τi.

• The typing rule for constructor expressions can just be:

Γ ` e : τ

Γ ` C e : +{C τ}

If that seems odd, read on.

Come up with three sound and generally useful subtyping rules for these sum types and justify infor-
mally why each rule is sound. Write the rules formally.

Note: We already have rules like reflexivity and transitivity. Your rules should specifically deal with
the new sum types.

5. (Implementing Subtyping) You have been provided an interpreter and typechecker for the language
in homework 3, extended with tuples, explicit subsumption, and named types. The example program
factorial uses these new features, but it will not typecheck until you implement subtype checking.
Language details:

• A program now begins with zero or more “type aliases” of the form type s = τ where type is a
keyword, s is an identifier, and τ is a type. A type alias makes s a legal type. As for subtyping,
s ≤ τ and τ ≤ s. You may assume without checking that a program’s type aliases have no cyclic
references (see challenge problems below) and each alias defines a different type name.

• The typechecker does not allow implicit subsumption. However, if e has type τ and τ ≤ τ ′, then
the explicit subsumption (e : τ ′) has type τ ′. If τ is not a subtype of τ ′, then (e : τ ′) should
not typecheck.

• Tuple types are written t1 * t2 ... * tn. There is no syntax for tuple types with fewer than
2 components even though the interpreter and typechecker support them.

• Similarly, tuple expressions are written (e1, e2, ..., en).

• To get a field of a tuple, use e.i where i is an integer and the fields are numbered left-to-right
starting with 1.

2

All you need to do is implement the subtype function in main.ml to support the following:

• A named type (i.e., type alias) is a subtype of what it aliases and vice-versa.

• Int is a subtype of Int.

• Reference types are invariant as in problem 1(d).

• Tuple types have width and depth subtyping.

• Function types have their usual contravariant argument and covariant result subtyping.

Note: Feel free to use functions from the List library to make your solution more concise. Pattern-
matching on pairs of types is also very useful.

Challenge Problems:

1. (The CPS Transformation) Extend the CPS transformation from lecture 13 to include the translation
for pairs and sums as introduced in lecture 11.

2. (Implicit Subsumption) Change typecheck from problem 5 to support implicit subsumption between
type aliases and their definitions (but still require explicit subsumption for all other subtyping).

3. (Subtyping Cycle Detection) Extend your subtype-checker from problem 5 to be sound and always
terminate even if the type aliases have cycles in their definitions (e.g., the definition of s1 uses s2 and
vice-versa; one-type cycles are also a problem). Explain what subtyping you do and do not support in
the presence of cycles.

What to turn in:

• Hard-copy (written or typed) answers to problems 1, 3, and 4, and optionally Challenge 1.

• Caml files problem2/main.ml and problem5/main.ml for problems 2 and 5. For turn-in purposes, you
can name them problem2_main.ml and problem5_main.ml.

Follow the dropbox link on the course website (homework section), follow the “Homework 4” link, and upload
your files. If you do not have an electronic copy of your non-code answers in a standard format, you can
turn in these problems in Adrian’s grad-student mailbox or give them to him directly.

3

