Please do not turn the page until everyone is ready.

Rules:

- The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.
- Please stop promptly at 11:50.
- You can rip apart the pages, but please write your name on each page.
- There are 100 points total, distributed unevenly among 4 questions (which have multiple parts).

Advice:

- Read questions carefully. Understand a question before you start writing.
- Write down thoughts and intermediate steps so you can get partial credit.
- The questions are not necessarily in order of difficulty. Skip around. In particular, make sure you get to all the problems.
- If you have questions, ask.
- Relax. You are here to learn.
Name:__________________________

For your reference:

\[
\begin{align*}
 s &::= \text{skip} \mid x := e \mid s \mid \text{if } e \ s \mid \text{while } e \\
 e &::= c \mid x \mid e + e \mid e \ast e \\
 (c &\in \{\ldots, -2, -1, 0, 1, 2, \ldots\}) \\
 (x &\in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots\})
\end{align*}
\]

\[
H ; e \Downarrow c
\]

\[
\begin{array}{llll}
\text{CONST} & \quad \text{VAR} & \quad \text{ADD} & \quad \text{MULT} \\
H ; c \Downarrow c & H ; x \Downarrow H(x) & H ; e_1 \Downarrow c_1 \quad H ; e_2 \Downarrow c_2 & H ; e_1 \ast e_2 \Downarrow c_1 \ast c_2 \\
\hline
H_1 ; s_1 \rightarrow H_2 ; s_2 & H ; x := e \rightarrow H, x := c ; \text{skip} & H ; \text{skip} ; s \rightarrow H ; s & H ; s_1 \rightarrow H' ; s_1' \\
\hline
\end{array}
\]

\[
\begin{align*}
\text{IF1} &\quad H ; e \Downarrow c \quad c > 0 \\
\text{IF2} &\quad H ; e \Downarrow c \quad c \leq 0 \\
\text{WHILE} &\quad H ; \text{if } e \ s_1 \ s_2 \rightarrow H ; s_1 \\
&\quad H ; \text{while } e \ s \rightarrow H ; \text{if e (s; while e s)} \text{ skip}
\end{align*}
\]

\[
\begin{align*}
 e &::= \lambda x. \ e \mid x \mid e \mid e \mid c \\
 v &::= \lambda x. \ e \mid c \\
 \tau &::= \text{int} \mid \tau \rightarrow \tau
\end{align*}
\]

\[
\begin{align*}
 e \rightarrow e'
\end{align*}
\]

\[
\begin{align*}
(\lambda x. \ e) \ v \rightarrow e[v/x] &\quad e_1 \rightarrow e'_1 &\quad e_2 \rightarrow e'_2 \\
\hline
\end{align*}
\]

\[
\begin{align*}
 x[e/x] = e &\quad e_1[e/x] = e'_1 &\quad y \neq x &\quad e_2[e/x] = e'_2 \\
\end{align*}
\]

\[
\begin{align*}
 (\lambda y. \ e_1)[e/x] = \lambda y. \ e'_1 \\
 e_1[e/x] = e'_1 &\quad e_2[e/x] = e'_2
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash e : \tau
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash c : \text{int} &\quad \Gamma \vdash x : \Gamma(x) &\quad \Gamma, x : \tau_1 \vdash e : \tau_2 &\quad \Gamma \vdash e_1 : \tau_1 \rightarrow \tau_1 &\quad \Gamma \vdash e_2 : \tau_2 \\
\end{align*}
\]

- If \(\vdash e : \tau \) and \(e \rightarrow e' \), then \(\vdash e' : \tau \).
- If \(\vdash e : \tau \), then \(e \) is a value or there exists an \(e' \) such that \(e \rightarrow e' \).
- If \(\Gamma, x : \tau' \vdash e : \tau \) and \(\Gamma \vdash e' : \tau' \), then \(\Gamma \vdash e[e'/x] : \tau \).
1. (IMP with booleans)
In this problem we extend the IMP expression language with booleans: true, false, negation, and inclusive-or. (Variables hold integers or booleans, but that is not directly relevant to the questions below.) The new syntax forms are:

\[
e ::= \ldots | \text{true} | \text{false} | \neg e | e \lor e
\]

The result of evaluating an expression can be an integer (not relevant below), true, or false. That is, we have \(H ; e \Downarrow v \) where \(v ::= c | \text{true} | \text{false} \).

Negation and inclusive-or can be “stuck” if a subexpression does not evaluate to a boolean.

(a) (10 points) Add rules to our large-step operational semantics to support the new syntax forms. For \(e_1 \lor e_2 \), use short-circuiting left-to-right evaluation (like || in many languages). If your rules all contain explicit uses of false and true, then you should expect to write 7 rules.

(b) (12 points) Theorem: If \(e \) always evaluates to a boolean, then \(e \) and \(\neg \neg e \) are equivalent.
- Restate this theorem formally.
- Prove this theorem formally.

(c) (10 points) Add implication \((e \Rightarrow e)\) to the language. Recall “\(a \) implies \(b \) if \(a \) is false or \(b \) is true.”
- Give large-step operational semantics rules that support this extension “directly,” using short-circuiting left-to-right evaluation. If your rules all contain explicit uses of false and true, then you should expect to write 3 rules.
- Give 1 rule that works just as well as your 3 rules by treating implication as a derived form. Remember this should be a large-step rule. Use \(v \) in this rule.
2. (18 points) (IMP with large-step semantics)

We can give IMP statements a large-step semantics with a judgment of the form \(H; s \downarrow H' \). The rules below do so, but there are errors. (The rules match neither our informal understanding nor our small-step semantics.) Find three errors (two of which are the same conceptual error), explain the problem, why it is a problem, and how to change the rules to solve the problem.

\[
\begin{array}{l}
\text{skip} & \quad \text{assign} & \quad \text{seq} \\
\hline
H; \text{skip} \downarrow H & H; e \downarrow c & H; s_1 \downarrow H_1 \quad H; s_2 \downarrow H_2 \\
\end{array}
\]

\[
\begin{array}{l}
\begin{array}{l}
\text{if1} \\
H; e \downarrow c \quad H; s_1 \downarrow H_1 \quad H; s_2 \downarrow H_2 \\
\hline
H; \text{if } e \quad s_1 \quad s_2 \downarrow H_1 \\
\end{array} \\
\begin{array}{l}
\text{if2} \\
H; e \downarrow c \quad H; s_1 \downarrow H_1 \quad H; s_2 \downarrow H_2 \\
\hline
H; \text{if } e \quad s_1 \quad s_2 \downarrow H_2 \\
\end{array} \\
\begin{array}{l}
\text{while} \\
H; (s; \text{while } e) \quad \text{skip} \downarrow H' \\
\hline
H; \text{while } e \quad s \downarrow H' \\
\end{array}
\]

Name: ________________________________

5
Consider this Caml code, which type-checks and runs correctly.

```caml
type dumbTree = Empty | Node of dumbTree * dumbTree

let rec s f t =
  match t with
  | Empty -> f t
  | Node(x,y) -> f t + s f x + s f y

let c1 t = s (fun x -> 1) t
let c2 t = s (fun x -> match x with Node(l,Empty) -> 1 | _ -> 0) t
```

(a) What are the types of \(s \), \(c1 \), and \(c2 \)?
(b) What do \(c1 \) and \(c2 \) compute? (Hint: The answers are straightforward.)
(c) Rewrite the last two lines of the code so they are shorter and equivalent.
4. (Coin-flipping in Lambda-Calculus)

In this problem we take the simply-typed lambda-calculus with conditionals (true, false, if $e_1 e_2 e_3$, and the type bool) and add a “coin-flip” expression, flip. This expression is not a value. Our call-by-value left-to-right small-step semantics has two new semantic rules:

$$
\text{flip} \rightarrow \text{true} \quad \text{flip} \rightarrow \text{false}
$$

(a) (5 points) In lambda-calculus with conditionals, write a (curried) function that returns the exclusive-or of its arguments. Do not use the constant true and use the constant false only once. (This does not require flip.)

(b) (5 points) Argue that for all e, $(\lambda x. e) \text{true}$ and $e[\text{true}/x]$ are equivalent under call-by-value.

(c) (8 points) Argue that depending on e, $(\lambda x. e) \text{flip}$ and $e[\text{flip}/x]$ may or may not be equivalent under call-by-value.

(d) (5 points) Give a typing rule for flip.

(e) (12 points) Assuming we have proofs of progress, preservation, and substitution for lambda-calculus with conditionals, explain how to extend the proofs for programs containing flip. Be clear about the induction hypothesis and what cases you are adding.