Looking back, looking forward

This is the last lecture using IMP (hooray!). Done:
- Abstract syntax
- Operational semantics (large-step and small-step)
- Semantic properties of (sets of) programs
- "Pseudo-denotational" semantics

Now:
- Packet-filter languages and other examples
- Equivalence of programs in a semantics
- Equivalence of different semantics

Next lecture: Local variables, lambda-calculus

Packet Filters

A very simple view of packet filters:
- Some bits come in off the wire
- Some application(s) want the "packet" and some do not (e.g., port number)
- For safety, only the O/S can access the wire
- For extensibility, the applications accept/reject packets

Conventional solution goes to user-space for every packet and app that wants (any) packets

Faster solution: Run app-written filters in kernel-space

What we need

Now the O/S writer is defining the packet-filter language!

Properties we wish of (untrusted) filters:
1. Do not corrupt kernel data structures
2. Terminate (within a time bound)
3. Run fast (the whole point)

Should we download some C/assembly code? (Get 1 of 3)

Should we make up a language and "hope" it has these properties?

Language-based approaches

1. Interpret a language
 + clean operational semantics, + portable, - may be slow (+ filter-specific optimizations), - unusual interface

2. Translate a language into C/assembly
 + clean denotational semantics, + employ existing optimizers, - upfront cost, - unusual interface

3. Require a conservative subset of C/assembly
 + normal interface, - too conservative w/o help

IMP has taught us about (1) and (2) — we'll get to (3)

A General Pattern

Packet filters move the code to the data rather than data to the code

General reasons: performance, security, other?

Other examples:
- Query languages
- Active networks
- Client-side web scripts (Javascript)
Equivalence motivation

- Program equivalence (we change the program):
 - code optimizer
 - code maintainer
- Semantics equivalence (we change the language):
 - interpreter optimizer
 - language designer
 - (prove properties for equivalent semantics with easier proof)

Note: Proofs may seem easy with the right semantics and lemmas
- (almost never start off with right semantics and lemmas)

Note: Small-step operational semantics often has harder proofs, but models more interesting things

What is equivalence?

Equivalence depends on what is observable!
- Partial I/O equivalence (if terminates, same ans)
 - while 1 skip equivalent to everything
 - not transitive
- Total I/O equivalence (same termination behavior, same ans)
- Total heap equivalence (same termination behavior, same heaps)
 - All (almost all?) variables have the same value
- Equivalence plus complexity bounds
 - Is \(O(2^n) \) really equivalent to \(O(n) \)?
 - Is “runs within 10ms of each other” important?
- Syntactic equivalence (perhaps with renaming)
 - Too strict to be interesting?

In PL, equivalence most often means total I/O equivalence

Program Example: Strength Reduction

Motivation: Strength reduction
- A common compiler optimization due to architecture issues

Theorem: \(H ; e * 2 \downarrow c \) if and only if \(H ; e + e \downarrow c \)

Proof sketch:
- Prove separately for each direction
- Invert the assumed derivation, use hypotheses plus a little math to derive what we need
- Hmm, doesn’t use induction. That’s because this theorem isn’t very useful...

Program Example: Nested Strength Reduction

Theorem: If \(e' \) has a subexpression of the form \(e * 2 \),
then \(H ; e' \downarrow c' \) if and only if \(H ; e'' \downarrow c' \)
where \(e'' \) is \(e' \) with \(e * 2 \) replaced with \(e + e \)

First some useful metatation:
\[
C ::= [\cdot] | C + e | e + C | C * e | e * C
\]

\(C[e] \) is “\(C \) with \(e \) in the hole” (inductive definition of “stapling”)

Crisper statement of theorem:
\(H ; C[e * 2] \downarrow c' \) if and only if \(H ; C[e + e] \downarrow c' \)

Proof sketch: By induction on structure (“syntax height”) of \(C \)
- The base case \((C = []) \) follows from our previous proof
- The rest is a long, tedious, (and instructive!) induction

Proof reuse

As we cannot emphasize enough, proving is just like programming

The proof of nested strength reduction had nothing to do with \(e * 2 \) and \(e + e \) except in the base case where we used our previous theorem

A much more useful theorem would parameterize over the base case so that we could get the “nested \(X \)” theorem for any appropriate \(X \):

If \((H ; e_1 \downarrow c \) if and only if \(H ; e_2 \downarrow c \)\),
then \((H ; C[e_1] \downarrow c' \) if and only if \(H ; C[e_2] \downarrow c' \)

The proof is identical except the base case is “by assumption”

Small-step program equivalence

These sort of proofs also work with small-step semantics (e.g., our IMP statements), but tend to be more cumbersome, even to state.

Example: The statement-sequence operator is associative. That is,

(a) For all \(n \), if \(H ; s_1; (s_2; s_3) \rightarrow^n H' ; \text{skip} \) then there exist \(H'' \) and \(n' \) such that \(H ; (s_1; s_2); s_3 \rightarrow^{n'} H'' ; \text{skip} \) and \(H''(\text{ans}) = H'(\text{ans}) \).

(b) If for all \(n \) there exist \(H' \) and \(s' \) such that \(H ; s_1; (s_2; s_3) \rightarrow^n H' ; s' \),
then for all \(n \) there exist \(H'' \) and \(s'' \) such that \(H ; (s_1; s_2); s_3 \rightarrow^n H'' ; s'' \).

(Proof needs a much stronger induction hypothesis.)

One way to avoid it: Prove large-step and small-step semantics equivalent, then prove program equivalences in whichever is easier.
Language Equivalence Example

IMP w/o multiply large-step:

\[\begin{array}{ll}
\text{CONST} & \text{VAR} \\
H ; c \downarrow c & H ; x \downarrow H(x)
\end{array} \]

ADD

\[\begin{array}{ll}
H ; e_1 \downarrow c_1 & H ; e_2 \downarrow c_2 \\
H ; e_1 + e_2 \downarrow c_1 + c_2
\end{array} \]

IMP w/o multiply small-step:

\[\begin{array}{ll}
\text{SVAR} & \text{SADD} \\
H ; x \rightarrow H(x) & H ; e_1 \rightarrow e_1' + e_2
\end{array} \]

\[\begin{array}{ll}
H ; e_1 \rightarrow e_1' + e_2 & H ; e_2 \rightarrow e_2'
\end{array} \]

Theorem: Semantics are equivalent: \(H ; e \downarrow c \) if and only if \(H ; e \rightarrow^* c \)

Proof: We prove the two directions separately...

Proof, part 1

First assume \(H ; e \downarrow c \) and show \(\exists n. \ H ; e \rightarrow^n c \)

Lemma (prove it!): If \(H ; e \rightarrow^n e' \), then \(H ; e_1 + e \rightarrow^n e_1 + e' \) and \(H ; e + e_2 \rightarrow^n e' + e_2 \).

Given the lemma, prove by induction on derivation of \(H ; e \downarrow c \)

\[\begin{array}{l}
\text{ADD: Derivation with ADD implies } e = e_1 + e_2, \ c = c_1 + c_2. \\
H ; e_1 \downarrow c_1, \ \text{and } H ; e_2 \downarrow c_2 \quad \text{for some } e_1, e_2, c_1, c_2.
\end{array} \]

By induction (twice), \(H_1, \ H_2, \ H_3 \rightarrow e_1 \rightarrow c_1 \) and \(H ; e_2 \rightarrow c_2 \).

So by our lemma \(H ; e_1 + e_2 \rightarrow c_1 + c_2 \) and \(H ; e_1 + e_2 \rightarrow c_1 + c_2 \).

By SADD \(H ; c_1 + c_2 \rightarrow c_1 + c_2 \).

So \(H ; e_1 + e_2 \rightarrow c_1 + c_2 \).

Proof, part 2

Now assume \(\exists n. \ H ; e \rightarrow^n c \) and show \(H ; e \downarrow c \).

Proof by induction on \(n \):

\[\begin{array}{l}
\text{ADD: Derivation with ADD implies } e = e_1 + e_2, \ c = c_1 + c_2. \\
H ; e_1 \downarrow c_1, \ \text{and } H ; e_2 \downarrow c_2 \quad \text{for some } e_1, e_2, c_1, c_2.
\end{array} \]

By induction (twice), \(H_1, \ H_2, \ H_3 \rightarrow e_1 \rightarrow c_1 \) and \(H ; e_2 \rightarrow c_2 \).

So by our lemma \(H ; e_1 + e_2 \rightarrow c_1 + c_2 \) and \(H ; e_1 + e_2 \rightarrow c_1 + c_2 \).

By SADD \(H ; c_1 + c_2 \rightarrow c_1 + c_2 \).

So \(H ; e_1 + e_2 \rightarrow c_1 + c_2 \).

The cool part, redux

Step through the SLEFT case more visually:

By assumption, we must have derivations that look like this:

\[\begin{array}{ll}
H ; e_1 \rightarrow e_1' & H ; e_1 \downarrow c_1 \\
H ; e_1 + e_2 \rightarrow e_1' + e_2 & H ; e_2 \downarrow c_2 \\
H ; e_1 + e_2 \downarrow c_1 + c_2 & H ; e_1 + e_2 \downarrow c_1 + c_2
\end{array} \]

Grab the hypothesis from the left and the left hypothesis from the right and use induction to get \(H ; e_1 \downarrow c_1 \).

Now go grab the one hypothesis we haven’t used yet and combine it with our inductive result to derive our answer:

\[\begin{array}{ll}
H ; e_1 \downarrow c_1 & H ; e_2 \downarrow c_2 \\
H ; e_1 + e_2 \downarrow c_1 + c_2 & H ; e_1 + e_2 \downarrow c_1 + c_2
\end{array} \]
A nice payoff

Theorem: The small-step semantics is deterministic:
if \(H; e \rightarrow^* c_1 \) and \(H; e \rightarrow^* c_2 \), then \(c_1 = c_2 \)

Not obvious (see \texttt{sleft} and \texttt{sright}), nor do I know a direct proof
- Given \(((1 + 2) + (3 + 4)) + (5 + 6)) + (7 + 8)\) there are
many execution sequences, which all produce 36 but with
different intermediate expressions

Proof:
- Large-step evaluation is deterministic (easy induction proof)
- Small-step and and large-step are equivalent (just proved that)
- So small-step is deterministic
- Convince yourself a deterministic and a nondeterministic
 semantics cannot be equivalent

Conclusions
- Equivalence is a subtle concept
- Proofs “seem obvious” only when the definitions are right
- Some other language-equivalence claims:
 - Replace \textsc{while} rule with
 \[
 \begin{align*}
 H; e \Downarrow c & \quad c \leq 0 \\
 H; \text{while } e \text{ } s \rightarrow H; \text{skip} & \\
 H; e \Downarrow c & \quad c > 0 \\
 H; \text{while } e \text{ } s \rightarrow H; s; \text{while } e \text{ } s
 \end{align*}
 \]
 - Equivalent to our original language
 - Change syntax of heap and replace \textsc{assign} and \textsc{var} rules with
 \[
 \begin{align*}
 H; x := e & \rightarrow H, x \mapsto e; \text{skip} \\
 H; H(x) \Downarrow c & \\
 H; x \Downarrow c
 \end{align*}
 \]
 - \textit{NOT} equivalent to our original language