CSE505: Graduate Programming Languages
Lecture 3 — Operational Semantics

Dan Grossman
Fall 2012

Review

IMP’s abstract syntax is defined inductively:

```
 actions ::= skip | x := e | s ; s | if e s s | while e s

expressions ::= c | x | e + e | e * e
```

We haven’t yet said what programs mean! (Syntax is boring)

Encode our “social understanding” about variables and control flow

Outline

- Semantics for expressions
 1. Informal idea; the need for heaps
 2. Definition of heaps
 3. The evaluation judgment (a relation form)
 4. The evaluation inference rules (the relation definition)
 5. Using inference rules
 - Derivation trees as interpreters
 - Or as proofs about expressions
 6. Metatheory: Proofs about the semantics
- Then semantics for statements
- ...

Informal idea

Given e, what c does e evaluate to?

- $1 + 2$
- $x + 2$

It depends on the values of variables (of course)

Use a heap H for a total function from variables to constants

- Could use partial functions, but then $\exists H$ and e for which there is no c

We’ll define a relation over triples of H, e, and c

- Will turn out to be function if we view H and e as inputs and c as output
- With our metalanguage, easier to define a relation and then prove it is a function (if, in fact, it is)

Heaps

```
 H ::= · | H, x ↦ c
```

A lookup-function for heaps:

```
 H(x) = \begin{cases} 
 c & \text{if } H = H', x ↦ c \\
 H'(x) & \text{if } H = H', y ↦ c' \text{ and } y \neq x \\
 0 & \text{if } H = \cdot 
\end{cases}
```

- Last case avoids “errors” (makes function total)

“What heap to use” will arise in the semantics of statements

- For expression evaluation, “we are given an H”
The judgment

We will write: \[H ; e \triangleright c \]

to mean, “\(e\) evaluates to \(c\) under heap \(H\)”

It is just a relation on triples of the form \((H, e, c)\)

We just made up metasyntax \(H ; e \triangleright c\) to follow PL convention
and to distinguish it from other relations

We can write: \(\cdot, x \mapsto 3 ; x + y \triangleright 3\), which will turn out to be true
(this triple will be in the relation we define)

Or: \(\cdot, x \mapsto 3 ; x + y \triangleright 6\), which will turn out to be false
(this triple will not be in the relation we define)

Instantiating rules

Example instantiation:
\[
\begin{align*}
\cdot, y &\mapsto 4 ; 3 + y \triangleright 7 \\
\cdot, y &\mapsto 4 ; 5 \triangleright 5 \\
\cdot, y &\mapsto 4 ; (3 + y) + 5 \triangleright 12
\end{align*}
\]

Instantiates:
\[
\text{ADD} \quad H ; e_1 \triangleright c_1 \quad H ; e_2 \triangleright c_2 \\
\quad \quad \quad H ; e_1 + e_2 \triangleright c_1 + c_2
\]

with
\[
H = \cdot, y \mapsto 4
\]

\[
e_1 = (3 + y)
\]

\[
c_1 = 7
\]

\[
e_2 = 5
\]

\[
c_2 = 5
\]

Back to relations

So what relation do our inference rules define?

- Start with empty relation (no triples) \(R_0\)
- Let \(R_i\) be \(R_{i-1}\) union all \(H ; e \triangleright c\) such that we can instantiate some inference rule to have conclusion \(H ; e \triangleright c\) and all hypotheses in \(R_{i-1}\)
 - So \(R_i\) is all triples at the bottom of height-\(j\) complete derivations for \(j \leq i\)
- \(R_\infty\) is the relation we defined
 - All triples at the bottom of complete derivations

For the math folks: \(R_\infty\) is the smallest relation closed under the inference rules

Inference rules

\[
\begin{align*}
\text{CONST} & \quad H ; e \triangleright c \\
\text{VAR} & \quad H ; x \triangleright H(x)
\end{align*}
\]

\[
\begin{align*}
\text{ADD} & \quad \frac{H ; e_1 \triangleright c_1 \quad H ; e_2 \triangleright c_2}{H ; e_1 + e_2 \triangleright c_1 + c_2} \\
\text{MULT} & \quad \frac{H ; e_1 \triangleright c_1 \quad H ; e_2 \triangleright c_2}{H ; e_1 * e_2 \triangleright c_1 * c_2}
\end{align*}
\]

Top: hypotheses
Bottom: conclusion (read first)

By definition, if all hypotheses hold, then the conclusion holds

Each rule is a schema you “instantiate consistently”

- So rules “work” “for all” \(H, c, e_1, \text{etc.}\)
- But “each” \(e_1\) has to be the “same” expression

Derivations

A (complete) derivation is a tree of instantiations with axioms at the leaves

Example:
\[
\begin{align*}
\cdot, y &\mapsto 4 ; 3 \triangleright 3 \\
\cdot, y &\mapsto 4 ; y \triangleright 4 \\
\cdot, y &\mapsto 4 ; 3 + y \triangleright 7 \\
\cdot, y &\mapsto 4 ; (3 + y) + 5 \triangleright 12
\end{align*}
\]

By definition, \(H ; e \triangleright c\) if there exists a derivation with \(H ; e \triangleright c\) at the root

What are these things?

We can view the inference rules as defining an interpreter

- Complete derivation shows recursive calls to the “evaluate expression” function
 - Recursive calls from conclusion to hypotheses
 - Syntax-directed means the interpreter need not “search”
- See OCaml code in Homework 1

Or we can view the inference rules as defining a proof system

- Complete derivation proves facts from other facts starting with axioms
 - Facts established from hypotheses to conclusions
Some theorems

- Progress: For all \(H \) and \(e \), there exists a \(c \) such that
 \[H ; e \Downarrow c \]
- Determinacy: For all \(H \) and \(e \), there is at most one \(c \) such that
 \[H ; e \Downarrow c \]

We rigged it that way...
what would division, undefined-variables, or \texttt{gettime()} do?

Proofs are by induction on the the structure (i.e., height) of the expression \(e \)

On to statements

A statement doesn’t produce a constant

It produces a new, possibly-different heap
- If it terminates

We could define \(H_1 ; s \Downarrow H_2 \)
- Would be a partial function from \(H_1 \) and \(s \) to \(H_2 \)
- Works fine; could be a homework problem

Instead we’ll define a “small-step” semantics and then “iterate” to “run the program”

\[H_1 ; s_1 \rightarrow H_2 ; s_2 \]

Statement semantics

\[
\begin{align*}
H_1 ; s_1 & \rightarrow H_2 ; s_2 \\
\text{ASSIGN} & \quad H ; e \Downarrow c \\
& \quad H ; x := e \rightarrow H, x \rightarrow c ; \text{skip} \\
\text{SEQ1} & \quad H ; \text{skip}; s \rightarrow H ; s \\
\text{IF1} & \quad H ; \text{if } e \quad s_1 \rightarrow H ; s_1 \\
\text{IF2} & \quad H ; e \Downarrow c \quad c \leq 0 \\
& \quad H ; \text{if } e \quad s_1 \quad s_2 \rightarrow H ; s_2 \\
\text{SEQ2} & \quad H ; s_1 \rightarrow H' ; s_1' \\
& \quad H ; s_1 ; s_2 \rightarrow H' ; s_1' ; s_2 \\
\end{align*}
\]

Example program execution

\[x := 3; (y := 1; \text{while } x \ (y := y * x; x := x - 1)) \]

Let’s write some of the state sequence. You can justify each step with a full derivation. Let \(s = (y := y * x; x := x - 1) \).

\[
\begin{align*}
& \rightarrow \cdot, x \leftrightarrow 3; \text{skip}; y := 1; \text{while } x \ s \\
& \rightarrow \cdot, x \leftrightarrow 3; \text{skip}; y := 1; \text{while } x \ s \\
& \rightarrow^2 \cdot, x \leftrightarrow 3, y \leftrightarrow 1; \text{while } x \ s \\
& \rightarrow \cdot, x \leftrightarrow 3, y \leftrightarrow 1; \text{if } x (s; \text{while } x \ s) \text{ skip} \\
& \rightarrow \cdot, x \leftrightarrow 3, y \leftrightarrow 1; y := y * x; x := x - 1; \text{while } x \ s
\end{align*}
\]

Program semantics

Defined \(H ; s \rightarrow H' ; s' \), but what does “s” mean/do?

Our machine iterates: \(H_1; s_1 \rightarrow H_2; s_2 \rightarrow H_3; s_3 \ldots \),
with each step justified by a complete derivation using our single-step statement semantics

Let \(H_1 ; s_1 \rightarrow^* H_2 ; s_2 \) mean “becomes after 0 or more steps”

Let \(H_1 ; s_1 \rightarrow^n H_2 ; s_2 \) mean “becomes after n steps”

Pick a special “answer” variable \texttt{ans}

The program \(s \) produces \(c \) if \(s \rightarrow^* H ; \text{skip} \) and \(H(\texttt{ans}) = c \)

Does every \(s \) produce a \(c \)?

Statement semantics cont’d

What about \texttt{while e s} (do s and loop if \(e > 0 \))?

\[
\begin{align*}
\text{WHILE} & \quad H \ ; \text{while } e \ s \rightarrow H ; \text{if } e \ (s; \text{while } e \ s) \text{ skip} \\
\text{Many other equivalent definitions possible}
\end{align*}
\]
Continued...

\[\rightarrow^2 \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3; x := x - 1; \textbf{while} \ x \ s\]

\[\rightarrow^2 \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2; \textbf{while} \ x \ s\]

\[\rightarrow \ldots, y \mapsto 3, x \mapsto 2; \textbf{if} \ x \ (s; \textbf{while} \ x \ s) \ \textbf{skip}\]

\[\rightarrow \ldots, y \mapsto 6, x \mapsto 0; \textbf{skip}\]

Where we are

- Defined \(H ; e \downarrow c \) and \(H ; s \rightarrow H' ; s' \) and extended the latter to give \(s \) a meaning
 - The way we did expressions is “large-step operational semantics”
 - The way we did statements is “small-step operational semantics”
 - So now you have seen both

- Definition by interpretation: program means what an interpreter (written in a metalanguage) says it means
 - Interpreter represents a (very) abstract machine that runs code

- Large-step does not distinguish errors and divergence
 - But we defined IMP to have no errors
 - And expressions never diverge

Establishing Properties

We can prove a property of a terminating program by “running” it

Example: Our last program terminates with \(x \) holding 0

We can prove a program diverges, i.e., for all \(H \) and \(n \), \(\cdot; s \rightarrow^n H \); \textbf{skip} cannot be derived

Example: \textbf{while} 1 \textbf{skip}

By induction on \(n \), but requires a stronger induction hypothesis

More General Proofs

We can prove properties of executing all programs (satisfying another property)

Example: If \(H \) and \(s \) have no negative constants and \(H ; s \rightarrow^* H' ; s' \), then \(H' \) and \(s' \) have no negative constants.

Example: If for all \(H \), we know \(s_1 \) and \(s_2 \) terminate, then for all \(H \), we know \(H ; (s_1; s_2) \) terminates.