Finally, some formal PL content

For our first formal language, let’s leave out functions, objects, records, threads, exceptions, ...

What’s left: integers, mutable variables, control-flow

(Abstract) syntax using a common metalanguage:

“A program is a statement s, which is defined as follows”

\[
\begin{align*}
 s &::= \text{skip} \mid x := e \mid s ; s \mid \text{if } e \text{ s s } \mid \text{while } e \text{ s } \\
 e &::= c \mid x \mid e + e \mid e * e \\
 (c) &\in \{..., -2, -1, 0, 1, 2, ...\} \\
 (x) &\in \{x_1, x_2, ..., y_1, y_2, ..., z_1, z_2, ..., \}
\end{align*}
\]

Blue is metanotation: ::= for “can be a” and | for “or”

Metavariables represent “anything in the syntax class”

By abstract syntax, we mean that this defines a set of trees

- Node has some label for “which alternative”
- Children are more abstract syntax (subtrees) from the appropriate syntax class

Comparison to ML

```
if x skip ; := y 42 x y
```

```
if x skip := x y
\```

```
if \text{Var}("x"), Skip, Seq(Assign("y", Const 42), Assign("x", Var "y"))
```

```
Seq(If(Var("x"), Skip, Assign("y", Const 42)), Assign("x", Var "y"))
```

We are used to writing programs in concrete syntax, i.e., strings

That can be ambiguous: if x skip ; x := y

Since writing strings is such a convenient way to represent trees, we allow ourselves parentheses (or defaults) for disambiguation

- Trees are our “truth” with strings as a “convenient notation”
- If x skip (y := 42 ; x := y) versus (if x skip y := 42) ; x := y
**Last word on concrete syntax**

Converting a string into a tree is **parsing**

Creating concrete syntax such that parsing is unambiguous is one challenge of **grammar design**

- Always trivial if you require enough parentheses or keywords
  - Extreme case: LISP, 1960s; Scheme, 1970s
  - Extreme case: XML, 1990s
- Very well studied in 1970s and 1980s, now typically the least interesting part of a compilers course

For the rest of this course, we start with abstract syntax

- Using strings only as a convenient shorthand and asking if it’s ever unclear what tree we mean

---

**Inductive definition**

\[
\begin{align*}
s & ::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \ s \ s \mid \text{while } e \ s \\
e & ::= c \mid x \mid e + e \mid e * e
\end{align*}
\]

This grammar is a finite description of an infinite set of trees

The apparent self-reference is not a problem, provided the definition uses well-founded induction

- Just like an always-terminating recursive function uses self-reference but is not a circular definition!

Can give precise meaning to our metanotation & avoid circularity:

- Let \( E_0 = \emptyset \)
- For \( i > 0 \), let \( E_i \) be \( E_{i-1} \) union “expressions of the form \( c \), \( x \), \( e_1 + e_2 \), or \( e_1 * e_2 \) where \( e_1, e_2 \in E_{i-1} \)”
- Let \( E = \bigcup_{i \geq 0} E_i \)

The set \( E \) is what we mean by our compact metanotation

**Proving Obvious Stuff**

All we have is syntax (sets of abstract-syntax trees), but let’s get the idea of proving things carefully...

**Theorem 1**: There exist expressions with three constants.

**Pedantic Proof**: Consider \( e = 1 + (2 + 3) \). Showing \( e \in E_3 \) suffices because \( E_3 \subseteq E \). Showing \( 2 + 3 \in E_2 \) and \( 1 \in E_2 \) suffices...

**PL-style proof**: Consider \( e = 1 + (2 + 3) \) and definition of \( E \).

**Theorem 2**: All expressions have at least one constant or variable.

**Pedantic proof**: By induction on \( i \), for all \( e \in E_i \), \( e \) has \( \geq 1 \) constant or variable.

- **Base**: \( i = 0 \) implies \( E_0 = \emptyset \)
- **Inductive**: \( i > 0 \). Consider arbitrary \( e \in E_i \) by cases:
  - \( e \in E_{i-1} \)...
  - \( e = c \)...
  - \( e = x \)...
  - \( e = e_1 + e_2 \) where \( e_1, e_2 \in E_{i-1} \)...
  - \( e = e_1 * e_2 \) where \( e_1, e_2 \in E_{i-1} \)...

---

**Our First Theorem**

There exist expressions with three constants.

**Pedantic Proof**: Consider \( e = 1 + (2 + 3) \). Showing \( e \in E_3 \) suffices because \( E_3 \subseteq E \). Showing \( 2 + 3 \in E_2 \) and \( 1 \in E_2 \) suffices...

**PL-style proof**: Consider \( e = 1 + (2 + 3) \) and definition of \( E \).

**Theorem 2**: All expressions have at least one constant or variable.
A “Better” Proof

All expressions have at least one constant or variable.

PL-style proof: By *structural induction* on (rules for forming an expression) \( e \). Cases:

- \( c \ldots \)
- \( x \ldots \)
- \( e_1 + e_2 \ldots \)
- \( e_1 \ast e_2 \ldots \)

Structural induction invokes the induction hypothesis on *smaller* terms. It is equivalent to the pedantic proof, and more convenient in PL.