Review

\[\begin{align*}
\text{e} &::= \lambda x. \text{e} \mid x \mid \text{e} \text{e} \mid \text{c} \\
\text{v} &::= \lambda x. \text{e} \mid \text{c} \\
\tau &::= \text{int} \mid \tau \rightarrow \tau \\
\Gamma &::= \cdot \mid \Gamma, x : \tau
\end{align*} \]

[\text{e}[\text{e}' / x]]: capture-avoiding substitution of \(\text{e}' \) for free \(x \) in \(\text{e} \)

\[\begin{align*}
\Gamma \vdash \text{c} : \text{int} \\
\Gamma \vdash x : \Gamma(x) \\
\Gamma \vdash \lambda x. \text{e} : \tau_1 \rightarrow \tau_2 \\
\Gamma \vdash \text{e}_1 : \tau_2 \rightarrow \tau_1 \\
\Gamma \vdash \text{e}_2 : \tau_2
\end{align*} \]

\[\Gamma \vdash \text{e}_1 \text{e}_2 : \tau_1 \]

Preservation: If \(\cdot \vdash \text{e} : \tau \) and \(\text{e} \rightarrow \text{e}' \), then \(\cdot \vdash \text{e}' : \tau \).

Progress: If \(\cdot \vdash \text{e} : \tau \), then \(\text{e} \) is a value or \(\exists \text{e}' \) such that \(\text{e} \rightarrow \text{e}' \).
Adding Stuff

Time to use STLC as a foundation for understanding other common language constructs

We will add things via a *principled methodology* thanks to a *proper education*

- Extend the syntax
- Extend the operational semantics
 - Derived forms (syntactic sugar), or
 - Direct semantics
- Extend the type system
- Extend soundness proof (new stuck states, proof cases)

In fact, extensions that add new types have even more structure
Let bindings (CBV)

\[e ::= \ldots \mid \text{let } x = e_1 \text{ in } e_2 \]

\[
\frac{e_1 \rightarrow e'_1}{\text{let } x = e_1 \text{ in } e_2 \rightarrow \text{let } x = e'_1 \text{ in } e_2}
\]

\[
\text{let } x = v \text{ in } e \rightarrow e[v/x]
\]

\[
\frac{\Gamma \vdash e_1 : \tau' \quad \Gamma, x : \tau' \vdash e_2 : \tau}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau}
\]

(Also need to extend definition of substitution...)

Progress: If \(e \) is a let, 1 of the 2 new rules apply (using induction)

Preservation: Uses Substitution Lemma

Substitution Lemma: Uses Weakening and Exchange
Derived forms

let seems just like \(\lambda \), so can make it a derived form

- let \(x = e_1 \) in \(e_2 \) “a macro” / “desugars to” \((\lambda x. e_2) e_1\)
- A “derived form”

(Harder if \(\lambda \) needs explicit type)

Or just define the semantics to replace let with \(\lambda \):

\[
\text{let } x = e_1 \text{ in } e_2 \rightarrow (\lambda x. e_2) e_1
\]

These 3 semantics are different in the state-sequence sense
\((e_1 \rightarrow e_2 \rightarrow \ldots \rightarrow e_n)\)

- But (totally) equivalent and you could prove it (not hard)

Note: ML type-checks let and \(\lambda \) differently (later topic)
Note: Don’t desugar early if it hurts error messages!
Booleans and Conditionals

\[
e ::= \ldots \mid \text{true} \mid \text{false} \mid \text{if} \ e_1 \ e_2 \ e_3
\]

\[
v ::= \ldots \mid \text{true} \mid \text{false}
\]

\[
\tau ::= \ldots \mid \text{bool}
\]

\[
e_1 \to e_1' \\
\frac{}{\text{if } e_1 \ e_2 \ e_3 \to \text{if } e_1' \ e_2 \ e_3}
\]

\[
\frac{}{\text{if true } e_2 \ e_3 \to e_2}
\]

\[
\frac{}{\text{if false } e_2 \ e_3 \to e_3}
\]

\[
\frac{\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : \tau \quad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \text{if } e_1 \ e_2 \ e_3 : \tau}
\]

\[
\frac{\Gamma \vdash \text{true} : \text{bool}}{\Gamma \vdash \text{false} : \text{bool}}
\]

Also extend definition of substitution (will stop writing that)...

Notes: CBN, new Canonical Forms case, all lemma cases easy
Pairs (CBV, left-right)

\[
\begin{align*}
e & ::= \ldots | (e, e) | e.1 | e.2 \\
v & ::= \ldots | (v, v) \\
\tau & ::= \ldots | \tau * \tau
\end{align*}
\]

\[
\begin{align*}
e_1 & \to e'_1 \\
(e_1, e_2) & \to (e'_1, e_2) \\
e_2 & \to e'_2 \\
(v_1, e_2) & \to (v_1, e'_2) \\
e & \to e' \\
e.1 & \to e'.1 \\
e.2 & \to e'.2 \\
(v_1, v_2).1 & \to v_1 \\
(v_1, v_2).2 & \to v_2
\end{align*}
\]

Small-step can be a pain

- Large-step needs only 3 rules
- Will learn more concise notation later (evaluation contexts)
Pairs continued

\[
\frac{
\Gamma \vdash e_1 : \tau_1 \\
\Gamma \vdash e_2 : \tau_2
}{
\Gamma \vdash (e_1, e_2) : \tau_1 \ast \tau_2
}
\]

\[
\frac{
\Gamma \vdash e : \tau_1 \ast \tau_2
}{
\Gamma \vdash e.1 : \tau_1
}
\quad \frac{
\Gamma \vdash e : \tau_1 \ast \tau_2
}{
\Gamma \vdash e.2 : \tau_2
}
\]

Canonical Forms: If \(\cdot \vdash v : \tau_1 \ast \tau_2 \), then \(v \) has the form \((v_1, v_2)\)

Progress: New cases using Canonical Forms are \(v.1 \) and \(v.2 \)

Preservation: For primitive reductions, inversion gives the result \textit{directly}
Records

Records are like \(n \)-ary tuples except with named fields

- Field names are not variables; they do not \(\alpha \)-convert

\[
e ::= \ldots \mid \{ l_1 = e_1; \ldots; l_n = e_n \} \mid e.l
\]

\[
v ::= \ldots \mid \{ l_1 = v_1; \ldots; l_n = v_n \}
\]

\[
\tau ::= \ldots \mid \{ l_1 : \tau_1; \ldots; l_n : \tau_n \}
\]

\[
e_i \to e'_i
\]

\[
\frac{l_1=v_1, \ldots, l_{i-1}=v_{i-1}, l_i = e_i, \ldots, l_n = e_n}{\{ l_1=v_1, \ldots, l_{i-1}=v_{i-1}, l_i = e'_i, \ldots, l_n = e_n \}}
\]

\[
e \to e'
\]

\[
e.l \to e'.l
\]

\[
1 \leq i \leq n
\]

\[
\frac{l_1 = v_1, \ldots, l_n = v_n}{l_i \to v_i}
\]

\[
\Gamma \vdash e_1 : \tau_1 \quad \ldots \quad \Gamma \vdash e_n : \tau_n \quad \text{labels distinct}
\]

\[
\Gamma \vdash \{ l_1 = e_1, \ldots, l_n = e_n \} : \{ l_1 : \tau_1, \ldots, l_n : \tau_n \}
\]

\[
\Gamma \vdash e : \{ l_1 : \tau_1, \ldots, l_n : \tau_n \} \quad 1 \leq i \leq n
\]

\[
\Gamma \vdash e.l_i : \tau_i
\]
Records continued

Should we be allowed to reorder fields?

- $\vdash \{l_1 = 42; l_2 = \text{true}\} : \{l_2 : \text{bool}; l_1 : \text{int}\}$
- Really a question about, “when are two types equal?”

Nothing wrong with this from a type-safety perspective, yet many languages disallow it

- Reasons: Implementation efficiency, type inference

Return to this topic when we study *subtyping*
Sums

What about ML-style datatypes:

\[
\text{type } t = \text{A} \mid \text{B of int} \mid \text{C of int * t}
\]

1. Tagged variants (i.e., discriminated unions)
2. Recursive types
3. Type constructors (e.g., type 'a mylist = ...)
4. Named types

For now, just model (1) with (anonymous) sum types

- (2) is in a later lecture, (3) is straightforward, and (4) we’ll discuss informally
Sums syntax and overview

\[
e ::= \ldots \mid \text{A}(e) \mid \text{B}(e) \mid \text{match } e \text{ with } \text{A}x. \, e \mid \text{B}x. \, e
\]

\[
v ::= \ldots \mid \text{A}(v) \mid \text{B}(v)
\]

\[
\tau ::= \ldots \mid \tau_1 + \tau_2
\]

▶ Only two constructors: \text{A} and \text{B}

▶ All values of any sum type built from these constructors

▶ So \text{A}(e) can have any sum type allowed by \text{e}’s type

▶ No need to declare sum types in advance

▶ Like functions, will “guess the type” in our rules
Sums operational semantics

\[
\text{match } A(v) \text{ with } Ax. \ e_1 \mid By. \ e_2 \rightarrow e_1[v/x]
\]

\[
\text{match } B(v) \text{ with } Ax. \ e_1 \mid By. \ e_2 \rightarrow e_2[v/y]
\]

\[
\frac{e \rightarrow e'}{A(e) \rightarrow A(e')} \quad \frac{e \rightarrow e'}{B(e) \rightarrow B(e')}
\]

\[
\text{match } e \text{ with } Ax. \ e_1 \mid By. \ e_2 \rightarrow \text{match } e' \text{ with } Ax. \ e_1 \mid By. \ e_2
\]

match has binding occurrences, just like pattern-matching

(Definition of substitution must avoid capture, just like functions)
What is going on

Feel free to think about *tagged values* in your head:

- A tagged value is a pair of:
 - A tag A or B (or 0 or 1 if you prefer)
 - The (underlying) value

- A match:
 - Checks the tag
 - Binds the variable to the (underlying) value

This much is just like OCaml and related to homework 2
Sums Typing Rules

Inference version (not trivial to infer; can require annotations)

\[
\begin{align*}
\Gamma & \vdash e : \tau_1 \\
\therefore \quad & \Gamma \vdash A(e) : \tau_1 + \tau_2 \\
\Gamma & \vdash e : \tau_2 \\
\therefore \quad & \Gamma \vdash B(e) : \tau_1 + \tau_2
\end{align*}
\]

\[\Gamma \vdash e : \tau_1 + \tau_2 \quad \Gamma, x:\tau_1 \vdash e_1 : \tau \quad \Gamma, y:\tau_2 \vdash e_2 : \tau\]

\[\Gamma \vdash \text{match } e \text{ with } Ax. \ e_1 \mid By. \ e_2 : \tau\]

Key ideas:

- For constructor-uses, “other side can be anything”
- For \textsf{match}, both sides need same type
 - Don’t know which branch will be taken, just like an \textsf{if}.
 - In fact, can drop explicit booleans and encode with sums:
 E.g., \textsf{bool} = \textsf{int} + \textsf{int}, \textsf{true} = A(0), \textsf{false} = B(0)
Sums Type Safety

Canonical Forms: If $\vdash v : \tau_1 + \tau_2$, then there exists a v_1 such that either v is $A(v_1)$ and $\vdash v_1 : \tau_1$ or v is $B(v_1)$ and $\vdash v_1 : \tau_2$

- Progress for $\text{match } v \text{ with } Ax. \ e_1 \mid By. \ e_2$ follows, as usual, from Canonical Forms

- Preservation for $\text{match } v \text{ with } Ax. \ e_1 \mid By. \ e_2$ follows from the type of the underlying value and the Substitution Lemma

- The Substitution Lemma has new “hard” cases because we have new binding occurrences

- But that’s all there is to it (plus lots of induction)
What are sums for?

- Pairs, structs, records, aggregates are fundamental data-builders
- Sums are just as fundamental: “this or that not both”
- You have seen how OCaml does sums (datatypes)
- Worth showing how C and Java do the same thing
 - A primitive in one language is an idiom in another
Sums in C

type t = A of t1 | B of t2 | C of t3
match e with A x -> ...

One way in C:

struct t {
 enum {A, B, C} tag;
 union {t1 a; t2 b; t3 c;} data;
};
... switch(e->tag){ case A: t1 x=e->data.a; ...
type t = A of t1 | B of t2 | C of t3
match e with A x -> ...

One way in Java (t4 is the match-expression’s type):

abstract class t {abstract t4 m();}
class A extends t { t1 x; t4 m(){...}}
class B extends t { t2 x; t4 m(){...}}
class C extends t { t3 x; t4 m(){...}}
... e.m() ...

- A new method in t and subclasses for each match expression
- Supports extensibility via new variants (subclasses) instead of extensibility via new operations (match expressions)
Pairs vs. Sums

You need both in your language

- With only pairs, you clumsily use dummy values, waste space, and rely on unchecked tagging conventions
- Example: replace `int + (int → int)` with `int * (int * (int → int))`

Pairs and sums are “logical duals” (more on that later)

- To make a $\tau_1 \times \tau_2$ you need a τ_1 and a τ_2
- To make a $\tau_1 + \tau_2$ you need a τ_1 or a τ_2
- Given a $\tau_1 \times \tau_2$, you can get a τ_1 or a τ_2 (or both; your “choice”)
- Given a $\tau_1 + \tau_2$, you must be prepared for either a τ_1 or τ_2 (the value’s “choice”)
Base Types and Primitives, in general

What about floats, strings, ...?
Could add them all or do something more general...

Parameterize our language/semantics by a collection of base types (b_1, \ldots, b_n) and primitives $(p_1 : \tau_1, \ldots, p_n : \tau_n)$. Examples:

 ▶ concat : string→string→string
 ▶ toInt : float→int
 ▶ “hello” : string

For each primitive, assume if applied to values of the right types it produces a value of the right type

Together the types and assumed steps tell us how to type-check and evaluate $p_i v_1 \ldots v_n$ where p_i is a primitive

We can prove soundness once and for all given the assumptions
Recursion

We won’t prove it, but every extension so far preserves termination

A Turing-complete language needs some sort of loop, but our lambda-calculus encoding won’t type-check, nor will any encoding of equal expressive power

▷ So instead add an explicit construct for recursion
▷ You might be thinking let rec \(f \ x = e \), but we will do something more concise and general but less intuitive
Recursion

We won’t prove it, but every extension so far preserves termination.

A Turing-complete language needs some sort of loop, but our
lambda-calculus encoding won’t type-check, nor will any encoding
of equal expressive power.

- So instead add an explicit construct for recursion
- You might be thinking `let rec f x = e`, but we will do
 something more concise and general but less intuitive

\[
e ::= \ldots \mid \text{fix } e
\]

\[
e \rightarrow e' \\
\text{fix } e \Rightarrow \text{fix } e'
\]

\[
\text{fix } \lambda x. e \Rightarrow e[\text{fix } \lambda x. e/x]
\]

No new values and no new types
Using fix

To use fix like let rec, just pass it a two-argument function where the first argument is for recursion

- Not shown: fix and tuples can also encode mutual recursion

Example:

\[
(\text{fix } \lambda f. \lambda n. \text{if } (n<1) \ 1 \ (n \ast (f(n - 1)))) \ 5
\]
Using fix

To use fix like let rec, just pass it a two-argument function where the first argument is for recursion

- Not shown: fix and tuples can also encode mutual recursion

Example:
\[
\text{fix } \lambda f. \lambda n. \text{if } (n<1) \ 1 \ (n \ast (f(n - 1))) \ 5
\]
\[
\rightarrow
\]
\[
\lambda n. \text{if } (n<1) \ 1 \ (n \ast ((\text{fix } \lambda f. \lambda n. \text{if } (n<1) \ 1 \ (n \ast (f(n - 1))))(n - 1)))) \ 5
\]
Using fix

To use fix like let rec, just pass it a two-argument function where the first argument is for recursion

- Not shown: fix and tuples can also encode mutual recursion

Example:

$$(\text{fix } \lambda f. \lambda n. \text{if } (n<1) 1 (n \ast (f(n-1)))) 5$$

$$\rightarrow$$

$$(\lambda n. \text{if } (n<1) 1 (n \ast ((\text{fix } \lambda f. \lambda n. \text{if } (n<1) 1 (n \ast (f(n-1))))(n-1)))) 5$$

$$\rightarrow$$

$$\text{if } (5<1) 1 (5 \ast ((\text{fix } \lambda f. \lambda n. \text{if } (n<1) 1 (n \ast (f(n-1))))(5-1)))$$
Using fix

To use fix like let rec, just pass it a two-argument function where
the first argument is for recursion

- Not shown: fix and tuples can also encode mutual recursion

Example:

\[
\text{fix } \lambda f. \lambda n. \text{ if } (n<1) 1 (n * (f(n - 1))) \text{) 5}
\]

\[
\rightarrow
\]

\[
(\lambda n. \text{ if } (n<1) 1 (n * ((\text{fix } \lambda f. \lambda n. \text{ if } (n<1) 1 (n * (f(n - 1))))(n - 1)))) \text{) 5}
\]

\[
\rightarrow
\]

\[
\text{if } (5<1) 1 (5 * ((\text{fix } \lambda f. \lambda n. \text{ if } (n<1) 1 (n * (f(n - 1))))(5 - 1))
\]

\[
\rightarrow 2
\]

\[
5 * ((\text{fix } \lambda f. \lambda n. \text{ if } (n<1) 1 (n * (f(n - 1))))(5 - 1))
\]
Using fix

To use **fix** like **let rec**, just pass it a two-argument function where the first argument is for recursion

- Not shown: **fix** and tuples can also encode mutual recursion

Example:

\[
(fix \lambda f. \lambda n. \text{if } (n<1) 1 (n \ast (f(n - 1)))) 5
\]

\[
\rightarrow
\]

\[
(\lambda n. \text{if } (n<1) 1 (n \ast (\text{if } (n<1) 1 (n \ast (f(n - 1))))(n - 1)))) 5
\]

\[
\rightarrow
\]

\[
\text{if } (5<1) 1 (5 \ast ((\text{if } \lambda f. \lambda n. \text{if } (n<1) 1 (n \ast (f(n - 1))))(5 - 1))
\]

\[
\rightarrow^2
\]

\[
5 \ast ((\text{if } \lambda f. \lambda n. \text{if } (n<1) 1 (n \ast (f(n - 1))))(5 - 1))
\]

\[
\rightarrow^2
\]

\[
5 \ast ((\lambda n. \text{if } (n<1) 1 (n \ast ((\text{fix } \lambda f. \lambda n. \text{if } (n<1) 1 (n \ast (f(n - 1))))(n - 1))))(n - 1)))) 4)
\]

\[
\rightarrow
\]

\[
\ldots
\]
Why called fix?

In math, a fix-point of a function g is an x such that $g(x) = x$

- This makes sense only if g has type $\tau \rightarrow \tau$ for some τ
- A particular g could have have 0, 1, 39, or infinity fix-points
- Examples for functions of type $\textbf{int} \rightarrow \textbf{int}$:
 - $\lambda x. x + 1$ has no fix-points
 - $\lambda x. x \times 0$ has one fix-point
 - $\lambda x. \text{absolute_value}(x)$ has an infinite number of fix-points
 - $\lambda x. \text{if } (x < 10 \text{ \&\& } x > 0) x 0$ has 10 fix-points
Higher types

At higher types like \(\text{int} \rightarrow \text{int} \rightarrow \text{int} \), the notion of fix-point is exactly the same (but harder to think about)

- For what inputs \(f \) of type \(\text{int} \rightarrow \text{int} \) is \(g(f) = f \)

Examples:

- \(\lambda f. \lambda x. (f x) + 1 \) has no fix-points

- \(\lambda f. \lambda x. (f x) \times 0 \) (or just \(\lambda f. \lambda x. 0 \)) has 1 fix-point
 - The function that always returns 0
 - In math, there is exactly one such function (cf. equivalence)

- \(\lambda f. \lambda x. \text{absolute_value}(f x) \) has an infinite number of fix-points: Any function that never returns a negative result
Back to factorial

Now, what are the fix-points of \(\lambda f. \lambda x. \text{if } (x < 1) 1 \ (x \ast (f(x - 1))) \)?

It turns out there is exactly one (in math): the factorial function!

And \(\text{fix } \lambda f. \lambda x. \text{if } (x < 1) 1 \ (x \ast (f(x - 1))) \) behaves just like the factorial function

- That is, it behaves just like the fix-point of \(\lambda f. \lambda x. \text{if } (x < 1) 1 \ (x \ast (f(x - 1))) \)
- In general, \(\text{fix} \) takes a function-taking-function and returns its fix-point

(This isn't necessarily important, but it explains the terminology and shows that programming is deeply connected to mathematics)
Typing \textbf{fix}

\[
\Gamma \vdash e : \tau \rightarrow \tau \\
\hline
\Gamma \vdash \text{fix } e : \tau
\]

Math explanation: If \(e\) is a function from \(\tau\) to \(\tau\), then \(\text{fix } e\), the fixed-point of \(e\), is some \(\tau\) with the fixed-point property

- So it’s something with type \(\tau\)

Operational explanation: \(\text{fix } \lambda x. e'\) becomes \(e'[\text{fix } \lambda x. e'/x]\)

- The substitution means \(x\) and \(\text{fix } \lambda x. e'\) need the same type
- The result means \(e'\) and \(\text{fix } \lambda x. e'\) need the same type

Note: The \(\tau\) in the typing rule is usually insantiated with a function type

- e.g., \(\tau_1 \rightarrow \tau_2\), so \(e\) has type \((\tau_1 \rightarrow \tau_2) \rightarrow (\tau_1 \rightarrow \tau_2)\)

Note: Proving soundness is straightforward!
General approach

We added let, booleans, pairs, records, sums, and fix

- **let** was syntactic sugar
- **fix** made us Turing-complete by “baking in” self-application
- The others *added types*

Whenever we add a new form of type τ there are:

- Introduction forms (ways to make values of type τ)
- Elimination forms (ways to use values of type τ)

What are these forms for functions? Pairs? Sums?

When you add a new type, think “what are the intro and elim forms”?

Anonymity

We added many forms of types, all *unnamed* a.k.a. *structural*. Many real PLs have (all or mostly) *named* types:

- Java, C, C++: all record types (or similar) have names
 - Omitting them just means compiler makes up a name
- OCaml sum types and record types have names

A never-ending debate:

- Structural types allow more code reuse: good
- Named types allow less code reuse: good
- Structural types allow generic type-based code: good
- Named types let type-based code distinguish names: good

The theory is often easier and simpler with structural types
Termination

Surprising fact: If $\cdot \vdash e : \tau$ in STLC with all our additions except \texttt{fix}, then there exists a v such that $e \rightarrow^\ast v$

- That is, all programs terminate

So termination is trivially decidable (the constant “yes” function), so our language is not Turing-complete

The proof requires more advanced techniques than we have learned so far because the size of expressions and typing derivations does not decrease with each program step

- Could present it in about an hour if desired

Non-proof:

- Recursion in λ calculus requires some sort of self-application
- Easy fact: For all Γ, x, and τ, we cannot derive $\Gamma \vdash x\ x : \tau$