CSE505 Graduate Programming Languages:
Type Safety for STLC with Constants

Most of this is available in the slides. However, it can help to see it all in one place.

Syntax

\[e ::= c \mid \lambda x. e \mid x \mid e e \]
\[v ::= c \mid \lambda x. e \]
\[\tau ::= \text{int} \mid \tau \to \tau \]
\[\Gamma ::= \cdot \mid \Gamma, x : \tau \]

Evaluation Rules (a.k.a. Dynamic Semantics)

\[e \rightarrow e' \]

- **E-Apply**
 \[
 (\lambda x. e) v \rightarrow e[v/x]
 \]

- **E-App1**
 \[
 e_1 \rightarrow e'_1 \\
 e_1 e_2 \rightarrow e'_1 e_2
 \]

- **E-App2**
 \[
 e_2 \rightarrow e'_2 \\
 v e_2 \rightarrow v e'_2
 \]

Typing Rules (a.k.a. Static Semantics)

\[\Gamma \vdash e : \tau \]

- **T-Const**
 \[
 \Gamma \vdash c : \text{int}
 \]

- **T-Var**
 \[
 \Gamma \vdash x : \Gamma(x)
 \]

- **T-Fun**
 \[
 \Gamma, x : \tau_1 \vdash e : \tau_2 \\
 x \notin \text{Dom}(\Gamma) \\
 \Gamma \vdash \lambda x. e : \tau_1 \to \tau_2
 \]

- **T-App**
 \[
 \Gamma \vdash e_1 : \tau_2 \to \tau_1 \\
 \Gamma \vdash e_2 : \tau_2 \\
 \Gamma \vdash e_1 e_2 : \tau_1
 \]

Type Soundness

Theorem (Type Soundness). If \(\cdot \vdash e : \tau \) and \(e \rightarrow^* e' \), then either \(e' \) is a value or there exists an \(e'' \) such that \(e' \rightarrow e'' \).
Proof

The Type Soundness Theorem follows as a simple corollary to the Progress and Preservation Theorems stated and proven below: Given the Preservation Theorem, a trivial induction on the number of steps taken to reach e' from e establishes that $\cdot \vdash e' : \tau$. Then the Progress Theorem ensures e' is a value or can step to some e''.

We need the following lemma for our proof of Progress, below.

Lemma (Canonical Forms). If $\cdot \vdash v : \tau$, then

i If τ is int, then v is a constant, i.e., some c.

ii If τ is $\tau_1 \rightarrow \tau_2$, then v is a lambda, i.e., $\lambda x. e$ for some x and e.

Canonical Forms. The proof is by inspection of the typing rules.

i If τ is int, then the only rule which lets us give a value this type is T-CONST.

ii If τ is $\tau_1 \rightarrow \tau_2$, then the only rule which lets us give a value this type is T-FUN.

Theorem (Progress). If $\cdot \vdash e : \tau$, then either e is a value or there exists some e' such that $e \rightarrow e'$.

Progress. The proof is by induction on (the height of) the derivation of $\cdot \vdash e : \tau$, proceeding by cases on the bottommost rule used in the derivation.

T-CONST e is a constant, which is a value, so we are done.

T-VAR Impossible, as Γ is \cdot.

T-FUN e is $\lambda x. e'$, which is a value, so we are done.

T-APP e is $e_1 e_2$.

By inversion, $\cdot \vdash e_1 : \tau' \rightarrow \tau$ and $\cdot \vdash e_2 : \tau'$ for some τ'.

If e_1 is not a value, then $\cdot \vdash e_1 : \tau' \rightarrow \tau$ and our induction hypothesis ensures $e_1 \rightarrow e'_1$ for some e'_1. Therefore, by E-App1, $e_1 e_2 \rightarrow e'_1 e_2$.

Else e_1 is a value. If e_2 is not a value, then $\cdot \vdash e_2 : \tau'$ and our induction hypothesis ensures $e_2 \rightarrow e'_2$ for some e'_2. Therefore, by E-App2, $e_1 e_2 \rightarrow e_1 e'_2$.

Else e_1 and e_2 are values. Then $\cdot \vdash e_1 : \tau' \rightarrow \tau$ and the Canonical Forms Lemma ensures e_1 is some $\lambda x. e'$. And $(\lambda x. e')$ $e_2 \rightarrow e'[e_2/x]$ by E-Apply, so $e_1 e_2$ can take a step.
We will need the following lemma for our proof of Preservation, below. Actually, in the proof of Preservation, we need only a Substitution Lemma where \(\Gamma \) is \(\cdot \), but proving the Substitution Lemma itself requires the stronger induction hypothesis using any \(\Gamma \).

Lemma (Substitution). If \(\Gamma, x : \tau' \vdash e : \tau \) and \(\Gamma \vdash e' : \tau' \), then \(\Gamma \vdash e[e'/x] : \tau \).

To prove this lemma, we will need the following two technical lemmas, which we will assume without proof (they’re not that difficult).

Lemma (Weakening). If \(\Gamma \vdash e : \tau \) and \(x \notin \text{Dom}(\Gamma) \), then \(\Gamma, x : \tau' \vdash e : \tau \).

Lemma (Exchange). If \(\Gamma, x : \tau_1, y : \tau_2 \vdash e : \tau \) and \(y \neq x \), then \(\Gamma, y : \tau_2, x : \tau_1 \vdash e : \tau \).

Now we prove Substitution.

Substitution. The proof is by induction on the derivation of \(\Gamma, x : \tau' \vdash e : \tau \). There are four cases. In all cases, we know \(\Gamma \vdash e' : \tau' \) by assumption.

T-Const \(e \) is \(c \), so \(e[e'/x] \) is \(c \). By **T-Const**, \(\Gamma \vdash c : \text{int} \).

T-Var \(e \) is \(y \) and \(\Gamma, x : \tau' \vdash y : \tau \).

If \(y \neq x \), then \(y[e'/x] \) is \(y \). By inversion on the typing rule, we know that \((\Gamma, x : \tau')(y) = \tau \). Since \(y \neq x \), we know that \(\Gamma(y) = \tau \). So by **T-Var**, \(\Gamma \vdash y : \tau \).

If \(y = x \), then \(y[e'/x] \) is \(e' \). \(\Gamma, x : \tau' \vdash x : \tau \), so by inversion, \((\Gamma, x : \tau')(x) = \tau \), so \(\tau = \tau' \). We know \(\Gamma \vdash e' : \tau' \), which is exactly what we need.

T-App \(e \) is \(e_1 e_2 \), so \(e[e'/x] \) is \((e_1[e'/x]) (e_2[e'/x]) \).

We know \(\Gamma, x : \tau' \vdash e_1 e_2 : \tau_1 \), so, by inversion on the typing rule, we know \(\Gamma, x : \tau' \vdash e_1 : \tau_2 \rightarrow \tau_1 \) and \(\Gamma, x : \tau' \vdash e_2 : \tau_2 \) for some \(\tau_2 \).

Therefore, by induction, \(\Gamma \vdash e_1[e'/x] : \tau_2 \rightarrow \tau_1 \) and \(\Gamma \vdash e_2[e'/x] : \tau_2 \).

Given these, **T-App** lets us derive \(\Gamma \vdash (e_1[e'/x]) (e_2[e'/x]) : \tau_1 \).

So by the definition of substitution \(\Gamma \vdash (e_1 e_2)[e'/x] : \tau_1 \).

T-Fun \(e \) is \(\lambda y. e_b \), so \(e[e'/x] \) is \(\lambda y. (e_b[e'/x]) \).

We can \(\alpha \)-convert \(\lambda y. e_b \) to ensure \(y \notin \text{Dom}(\Gamma) \) and \(y \neq x \).

We know \(\Gamma, x : \tau' \vdash \lambda y. e_b : \tau_1 \rightarrow \tau_2 \), so, by inversion on the typing rule, we know \(\Gamma, x : \tau', y : \tau_1 \vdash e_b : \tau_2 \).

By Exchange, we know that \(\Gamma, y : \tau_1, x : \tau' \vdash e_b : \tau_2 \).

By Weakening, we know that \(\Gamma, y : \tau_1 \vdash e' : \tau' \).

We have rearranged the two typing judgments so that our induction hypothesis applies (using \(\Gamma, y : \tau_1 \) for the typing context called \(\Gamma \) in the statement of the lemma), so, by induction, \(\Gamma, y : \tau_1 \vdash e_b[e'/x] : \tau_2 \).

Given this, **T-Fun** lets us derive \(\Gamma \vdash \lambda y. e_b[e'/x] : \tau_1 \rightarrow \tau_2 \).

So by the definition of substitution, \(\Gamma \vdash (\lambda y. e_b)[e'/x] : \tau_1 \rightarrow \tau_2 \).
Theorem (Preservation). If \(\cdot \vdash e : \tau \) and \(e \rightarrow e' \), then \(\cdot \vdash e' : \tau \).

Preservation. The proof is by induction on the derivation of \(\cdot \vdash e : \tau \). There are four cases.

T-Const \(e \) is \(c \). This case is impossible, as there is no \(e' \) such that \(c \rightarrow e' \).

T-Var \(e \) is \(x \). This case is impossible, as \(x \) cannot be typechecked under the empty context.

T-Fun \(e \) is \(\lambda x. e_b \). This case is impossible, as there is no \(e' \) such that \(\lambda x. e_b \rightarrow e' \).

T-App \(e \) is \(e_1 e_2 \), so \(\cdot \vdash e_1 e_2 : \tau \).

By inversion on the typing rule, \(\cdot \vdash e_1 : \tau_2 \rightarrow \tau \) and \(\cdot \vdash e_2 : \tau_2 \) for some \(\tau_2 \).

There are three possible rules for deriving \(e_1 e_2 \rightarrow e' \).

E-App1 Then \(e' = e'_1 e_2 \) and \(e_1 \rightarrow e'_1 \).

By \(\cdot \vdash e_1 : \tau_2 \rightarrow \tau \), \(e_1 \rightarrow e'_1 \), and induction, \(\cdot \vdash e'_1 : \tau_2 \rightarrow \tau \).

Using this and \(\cdot \vdash e_2 : \tau_2 \), T-App lets us derive \(\cdot \vdash e'_1 e_2 : \tau \).

E-App2 Then \(e' = e_1 e'_2 \) and \(e_2 \rightarrow e'_2 \).

By \(\cdot \vdash e_2 : \tau_2 \), \(e_2 \rightarrow e'_2 \), and induction \(\cdot \vdash e'_2 : \tau_2 \).

Using this and \(\cdot \vdash e_1 : \tau_2 \rightarrow \tau \), T-App lets us derive \(\cdot \vdash e_1 e'_2 : \tau \).

E-Apply Then \(e_1 \) is \(\lambda x. e_b \) for some \(x \) and \(e_b \), and \(e' = e'_b[e_2/x] \).

By inversion of the typing of \(\cdot \vdash e_1 : \tau_2 \rightarrow \tau \), we have \(\cdot \vdash x : \tau_2 \vdash e_b : \tau \).

This and \(\cdot \vdash e_2 : \tau_2 \) lets us use the Substitution Lemma to conclude \(\cdot \vdash e_b[e_2/x] : \tau \).