Type Safety for \textit{ST\lam\cal C} with Constants
CSE 505, Fall 2009

Most of this is available in the slides. However, it can help to see it all in one place.

Syntax

\[e ::= c \mid \lambda x. e \mid x \mid e \ e \]
\[v ::= c \mid \lambda x. e \]
\[\tau ::= \text{int} \mid \tau \to \tau \]
\[\Gamma ::= \cdot \mid \Gamma, x: \tau \]

Evaluation Rules

\[e \rightarrow e' \]

\[
\begin{array}{c}
\text{E-Apply} \\
\frac{(\lambda x. e) \ v \rightarrow e[v/x]}{}
\end{array}
\]

\[
\begin{array}{c}
\text{E-App1} \\
\frac{e_1 \rightarrow e_1'}{e_1 \ e_2 \rightarrow e_1' \ e_2}
\end{array}
\]

\[
\begin{array}{c}
\text{E-App2} \\
\frac{e_2 \rightarrow e_2'}{v \ e_2 \rightarrow v \ e_2'}
\end{array}
\]

Typing Rules

\[\Gamma \vdash e : \tau \]

\[
\begin{array}{c}
\text{T-Const} \\
\frac{}{\Gamma \vdash c : \text{int}}
\end{array}
\]

\[
\begin{array}{c}
\text{T-Var} \\
\frac{}{\Gamma \vdash x : \Gamma(x)}
\end{array}
\]

\[
\begin{array}{c}
\text{T-Fun} \\
\frac{\Gamma, x : \tau_1 \vdash e : \tau_2 \quad x \notin \text{Dom}(\Gamma)}{\Gamma \vdash \lambda x. e : \tau_1 \to \tau_2}
\end{array}
\]

\[
\begin{array}{c}
\text{T-App} \\
\frac{\Gamma \vdash e_1 : \tau_2 \to \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 \ e_2 : \tau_1}
\end{array}
\]
Type Soundness

Theorem (Type Soundness). If $\cdot \vdash e : \tau$ and $e \rightarrow^* e'$, then either e' is a value or there exists an e'' such that $e' \rightarrow e''$.

Proof

The Type Soundness Theorem follows as a simple corollary to the Progress and Preservation Theorems stated and proven below: Given the Preservation Theorem, a trivial induction on the number of steps taken to reach e' from e establishes that $\cdot \vdash e' : \tau$. Then the Progress Theorem ensures e' is a value or can step to some e''.

We need the following lemma for our proof of Progress, below.

Lemma (Canonical Forms). If $\cdot \vdash v : \tau$, then

i If τ is int, then v is a constant, i.e., some c.

ii If τ is $\tau_1 \rightarrow \tau_2$, then v is a lambda, i.e., $\lambda x. e$ for some x and e.

Canonical Forms. The proof is by inspection of the typing rules.

i If τ is int, then the only rule which lets us give a value this type is T-Const.

ii If τ is $\tau_1 \rightarrow \tau_2$, then the only rule which lets us give a value this type is T-Fun.

\[\square \]

Theorem (Progress). If $\cdot \vdash e : \tau$, then either e is a value or there exists some e' such that $e \rightarrow e'$.

Progress. The proof is by induction on (the height of) the derivation of $\cdot \vdash e : \tau$, proceeding by cases on the bottommost rule used in the derivation.

T-Const e is a constant, which is a value, so we are done.

T-Var Impossible, as Γ is \cdot.

T-Fun e is $\lambda x. e'$, which is a value, so we are done.

T-App e is $e_1 e_2$.

By inversion, $\cdot \vdash e_1 : \tau_2 \rightarrow \tau_1$ and $\cdot \vdash e_2 : \tau_2$.

If e_1 is not a value, then $\cdot \vdash e_1 : \tau_2 \rightarrow \tau_1$ and the induction hypothesis ensures $e_1 \rightarrow e'_1$ for some e'_1. Therefore, by E-App1, $e_1 e_2 \rightarrow e'_1 e_2$.

Else e_1 is a value. If e_2 is not a value, then $\cdot \vdash e_2 : \tau_2$ and our induction hypothesis ensures $e_2 \rightarrow e'_2$ for some e'_2. Therefore, by E-App2, $e_1 e_2 \rightarrow e_1 e'_2$.

Else e_1 and e_2 are values. Then $\cdot \vdash e_1 : \tau_2 \rightarrow \tau_1$ and the Canonical Forms Lemma ensures e_1 is some $\lambda x. e'$. And $\lambda x. e' e_2 \rightarrow e'[e_2/x]$ by E-Apply, so $e_1 e_2$ can take a step.
We will need the following lemma for our proof of Preservation, below. Actually, in the proof of Preservation, we need only a Substitution Lemma where \(\Gamma \) is \(\cdot \), but proving the Substitution Lemma itself requires the stronger induction hypothesis using any \(\Gamma \).

Lemma (Substitution). If \(\Gamma, x: \tau' \vdash e : \tau \) and \(\Gamma \vdash e' : \tau' \), then \(\Gamma \vdash e[e'/x] : \tau \).

To prove this lemma, we will need the following two technical lemmas, which we will assume without proof (they’re not that difficult).

Lemma (Weakening). If \(\Gamma \vdash e : \tau \) and \(x \not\in \text{Dom}(\Gamma) \), then \(\Gamma, x: \tau' \vdash e : \tau \).

Lemma (Exchange). If \(\Gamma, x: \tau_1, y: \tau_2 \vdash e : \tau \) and \(y \neq x \), then \(\Gamma, y: \tau_2, x: \tau_1 \vdash e : \tau \).

Now we prove Substitution.

Substitution. The proof is by induction on the derivation of \(\Gamma, x: \tau' \vdash e : \tau \). There are four cases. In all cases, we know \(\Gamma \vdash e' : \tau' \) by assumption.

T-Const \(e \) is \(c \), so \(e[e'/x] \) is \(c \). By **T-Const**, \(\Gamma \vdash c : \text{int} \).

T-Var \(e \) is \(y \) and \(\Gamma, x: \tau' \vdash y : \tau \).

If \(y \neq x \), then \(y[e'/x] \) is \(y \). By inversion on the typing rule, we know that \((\Gamma, x: \tau')(y) = \tau \). Since \(y \neq x \), we know that \(\Gamma(y) = \tau \). So by **T-Var**, \(\Gamma \vdash y : \tau \).

If \(y = x \), then \(y[e'/x] \) is \(e' \). \(\Gamma, x: \tau' \vdash x : \tau \), so by inversion, \((\Gamma, x: \tau')(x) = \tau \), so \(\tau = \tau' \).

We know \(\Gamma \vdash e' : \tau' \), which is exactly what we need.

T-App \(e \) is \(e_1 \, e_2 \), so \(e[e'/x] \) is \((e_1[e'/x]) \, (e_2[e'/x]) \).

We know \(\Gamma, x: \tau' \vdash e_1 \, e_2 : \tau_1 \), so, by inversion on the typing rule, we know
\[
\Gamma, x: \tau' \vdash e_1 : \tau_2 \rightarrow \tau_1 \quad \text{and} \quad \Gamma, x: \tau' \vdash e_2 : \tau_2 \quad \text{for some} \ \tau_2.
\]

Therefore, by induction, \(\Gamma \vdash e_1[e'/x] : \tau_2 \rightarrow \tau_1 \) and \(\Gamma \vdash e_2[e'/x] : \tau_2 \).

Given these, **T-App** lets us derive \(\Gamma \vdash (e_1[e'/x]) \, (e_2[e'/x]) : \tau_1 \).

So by the definition of substitution \(\Gamma \vdash (e_1 \, e_2)[e'/x] : \tau_1 \).

T-Fun \(e \) is \(\lambda y. \, e_b \), so \(e[e'/x] \) is \(\lambda y. \, (e_b[e'/x]) \). We can \(\alpha \)-convert \(\lambda y. \, e_b \) to ensure \(y \not\in \text{Dom}(\Gamma) \).

We know \(\Gamma, x: \tau' \vdash \lambda y. \, e_b : \tau_1 \rightarrow \tau_2 \), so, by inversion on the typing rule, we know
\[
\Gamma, x: \tau', y: \tau_1 \vdash e_b : \tau_2.
\]

By Exchange, we know that \(\Gamma, y: \tau_1, x: \tau' \vdash e_b : \tau_2 \).

By Weakening, we know that \(\Gamma, y: \tau_1 \vdash e' : \tau' \).

We have rearranged the two typing judgments so that our induction hypothesis applies (using \(\Gamma, y: \tau_1 \) for the typing context called \(\Gamma \) in the statement of the lemma), so, by induction, \(\Gamma, y: \tau_1 \vdash e_b[e'/x] : \tau_2 \).

Given this, **T-Fun** lets us derive \(\Gamma \vdash \lambda y. \, e_b[e'/x] : \tau_1 \rightarrow \tau_2 \).

So by the definition of substitution, \(\Gamma \vdash (\lambda y. \, e_b)[e'/x] : \tau_1 \rightarrow \tau_2 \).
Theorem (Preservation). If · ⊢ e : τ and e → e′, then · ⊢ e′ : τ.

Preservation. The proof is by induction on the derivation of · ⊢ e : τ. There are four cases.

T-Const e is c. This case is impossible, as there is no e′ such that c → e′.

T-Var e is x. This case is impossible, as x cannot be typechecked under the empty context.

T-Fun e is λx. eb. This case is impossible, as there is no e′ such that λx. eb → e′.

T-App e is e1 e2, so · ⊢ e1 e2 : τ.

By inversion on the typing rule, · ⊢ e1 : τ2 → τ and · ⊢ e2 : τ2 for some τ2.

There are three possible rules for deriving e1 e2 → e′.

E-App1 Then e′ = e′1 e2 and e1 → e′1.

By · ⊢ e1 : τ2 → τ, e1 → e′1, and induction, · ⊢ e′1 : τ2 → τ.

Using this and · ⊢ e2 : τ2, T-App lets us derive · ⊢ e′1 e2 : τ.

E-App2 Then e′ = e1 e′2 and e2 → e′2.

By · ⊢ e2 : τ2, e2 → e′2, and induction · ⊢ e′2 : τ2.

Using this and · ⊢ e1 : τ2 → τ, T-App lets us derive · ⊢ e1 e′2 : τ.

E-Apply Then e1 is λx. eb for some x and eb, and e′ = eb[e2/x].

By inversion of the typing of · ⊢ e1 : τ2 → τ, we have ·, x:τ2 ⊢ eb : τ.

This and · ⊢ e2 : τ2 lets us use the Substitution Lemma to conclude · ⊢ eb[e2/x] : τ.