CSE 505:
Concepts of Programming Languages

Dan Grossman

Fall 2009
Lecture 8— Type Safety; Extensions to STLC

-

Dan Grossman CSE505 Fall 2009, Lecture 8

/Outline

e Type-safety proof

— Also posted in non-slide form

e Discuss the proof
— Chart of lemma dependencies
— Inverting multiple derivations
e Extend STAC
(pairs, records, sums, recutrsion, ...)
— For each, sketch proof additions

— At the end, discuss the general approach

-

e Not today: References, exceptions, polymorphism, lists, ...

Dan Grossman CSE505 Fall 2009, Lecture 8

/Review \

A-calculus with constants:

ex=Ax.e|x|ee|c viai=Ax.e|c
61—>€,1 62—>€,2
(Ax. e) v — el[v/x] e1 ez — e} ez v ez — v ey
Yy Fx
rle/xz] =e yle/z] =y cle/z] = c

eile/z]=e] y#zx ygFV(e) eile/x] = e} e2le/x] = e5
(Ay. e1)e/x] = Ay. e} (e1 e2)[e/x] = e] e5

Stuck states: not values and no step applies...

Avoid stuck states to catch bugs (why would you want to get to such a

state?) and make implementation easier (no need to check for being stuck)

- /

Dan Grossman CSE505 Fall 2009, Lecture 8

/Review Continued \

Defined a type system to classify A-terms.
Some terms have types; some don't.

Tu=int | T —> T I':=.|Tyx:T

I'z:mmFe:m

' c:int I'Fx:T'(x) I'Ax.e: T — T2

'ei:1m72 — 7 I'-e2: 1

I'Heigex:m

Theorem: A program that typechecks under - won't get stuck, i.e., If
- = e : 7 then e diverges or Jv, nn such that e —™ v.

Proof: Corollary to these lemmas:

Lemma (Preservation): If - e : 7 and e — €, then - e’ : 7.

Lemma (Progress): If - - e : 7, then e is a value or there exists an e’

\QJch that e — €’. /

Dan Grossman CSE505 Fall 2009, Lecture 8

/Progress \

Lemma: If - = e : 7, then e is a value or there exists an e’ such that

e — e
Proof: We first prove this lemma:
Lemma (Canonical Forms): If - - v : 7, then:
e if 7 is int, then v is some ¢
e if 7 has the form 73 — 75 then v has the form Az. e.

Proof: By inspection of the form of values and typing rules.

We now prove Progress by induction on the derivation of - - e : 7.

- /

Dan Grossman CSE505 Fall 2009, Lecture 8

/Progress continued \

Bottom rule could conclude:

® - x: 7T — impossible because - e : T.
e - c:int — then e is a value
e - A\x.e: T™— then e is a value

e - - eq e3 : T — By induction either e is some v or can become
some e}. If it becomes e, then e; ez — e/ ea. Else by
Induction either e5 is some v5 or can become some 6’2. If it
becomes 6’2, then v; e — V1 6’2. Else e is v1 vg. Inverting the
assumed typing derivation ensures - - vy : 7/ — 7 for some 7.
So Canonical Forms ensures v has the form Ax. €’. So

v, v — €e'[va/x].

\\Note: If we add +, we need the other part of Canonical Forms. /

Dan Grossman CSE505 Fall 2009, Lecture 8

/Preservation

~

Lemma (Preservation): If - e : 7 and e — €/, then -+ ¢€’' : 7.

Proof: By induction on (height of) the derivation of - - e : 7.
Bottom rule could conclude:

e - x: 7 — actually, it can’t; -(x) doesn't exist.

e . c¢:int — then e — €’ is impossible, so lemma holds
vacuously.

e - Ax. e: 7™ — then e — €’ is impossible, so lemma holds
vacuously.

for some 7/. There are 3 ways to derive e; e; — €’. ..

-

e -Hejex:T™—Thenweknow -+Heq: 7" — 7and -+ es :

Dan Grossman CSE505 Fall 2009, Lecture 8

/Preservation, app case

-

We have: -+ ey : 7" — 7, -Feq: 7/, and e1 e — €’. We need:

-+ €’ : 7. The derivation of e; eo — €’ ensures 1 of these:

e’ is e} ez and e; — e: Sowith - F-e; : 7/ — 7 and

induction, - e} : 7/ — 7. So with - - ez : T’ we can derive

-Felex:T.

e’ is e e, and ez — e5: So with - - ez : 7/ and induction,
el : 7. Sowith - ey : 7/ — T we can derive

Feiey:T

ey is some Ax. ez and eg is some v and €’ is eg[v/x]. ..

Dan Grossman CSE505 Fall 2009, Lecture 8

/App case, 3 case

~

Because - = Ax. e3 : ¥/ — 7, we know -, z:7" I e3 : 7. So with

wx:T'Heg:Tand - ey 7/, weneed - esfv/x] T

The Substitution Lemma proves a strengthened result (must be
stronger to prove the lemma)

Lemma (Substitution): f Ty x:7" ey : 7 and ' F es : 7/, then
' elex/x] : T

Proof: By induction on derivation of I', x:7" ey : T.

-

Dan Grossman CSE505 Fall 2009, Lecture 8

/Proving Substitution

e I',x:7" - c:int. Then cles/x] =cand T F c:int.
e ,x:7’' Fy: (T,x:7")(y). Eithery = x or y # x.
If y = «, then (T, x:7")(x) is 7’ and x[ez/x] is ea.

SoT' I ey : 7/ satisfies the lemma.

If y # x then (T, x:7")(y) is I'(y) and ylea/x] is y.
So we can derive T' -y : T'(y).

o I'x:7' F e, ey : 7. Then for some 7, and T,

Ix:t'" Feg:717gand T, i7" ep 2 7.

So we can derive I' - e, [ea/x] eplez/x] ¢ T.

And (eq ep)lea/x] is eqlea/x] eplea/x].

-

Bottom rule of ', x:7" F ey : 7 could conclude (page 1 of 2):

So by induction ' Fegles/x] : 74 and T’ Feplez/x] : 7.

Dan Grossman CSE505 Fall 2009, Lecture 8

10

/Proving Substitution Cont'd

o I',x:7" F Ay. eq : 7. (We can assume y # « and
y &€ Dom(TI").) Then for some 74 and 7,
I'xe:m/,y:1a Feq : 75 and 7 is 74 — To.

By an Exchange Lemma I', y:7q, x:7' - €q : Tb.
By a Weakening Lemma and T" - e : 7/, we know
'yt Feg: 7'

So by induction (using I, y:7, for T' (1)),
I'y:1o F eqlea/x] : 7.

So we can derive I' - Ay. eglex/x] : 74 — Tb.

And (Ay. ey)[ez/x] is Ay. (eqlez/x]).
Exchange: f ', x:m,y:72o Fe: 7, then ' y:m3, ey H e : 7.

Weakening: If T'+ e : 7 and * € Dom(T"), then 'y x:7' e : T.

-

/

Dan Grossman CSE505 Fall 2009, Lecture 8

11

/I_emma dependencies

e Safety (evaluation never gets stuck)

— Preservation (to stay well-typed)

* Substitution (3-reduction stays well-typed)
- Weakening (substituting under nested As well-typed)
- Exchange (technical point)

— Progress (well-typed not stuck yet)

+ Canonical Forms (primitive reductions apply)
Comments:
e Substitution strengthened to open terms for the proof

e When we add heaps, Preservation will use Weakening directly

-

Dan Grossman CSE505 Fall 2009, Lecture 8

12

/Summary \

What may seem a weird lemma pile is a powerful recipe:

Soundness: We don't get stuck because our induction hypothesis
(typing) holds (Preservation) and stuck terms aren't well typed
(contrapositive of Progress).

Preservation holds by induction on typing (replace subterms with same
type) and Substitution (for B-reduction). Substitution must work over
open terms and requires Weakening and Exchange.

Progress holds by induction on expressions (or typing) because either a
subexpression progresses or we can make a primitive reduction (using
Canonical Forms).

- /

Dan Grossman CSE505 Fall 2009, Lecture 8

13

/Induction on derivations — Another Look \

The app cases are really elegant and worth mastering: e = e es3. For

Preservation, lemma assumes - - ey es & T.

Inverting the typing derivation ensures it has the form:

D, D,

cFej: 17— T cFeq: T’

°|—€1622’T

1 Preservation subcase: If e; e2 — € ez, inverting that derivation

means:
D

/
€1 — €

/
€1 €2 — €4 €2

- /

Dan Grossman CSE505 Fall 2009, Lecture 8

14

/continued. .

~

The inductive hypothesis means there is a derivation of this form:

D3

Fey:T — T
So a derivation of this form exists:

D3 DZ

/ / /
ey T —> T -Feq T

/
-Hejez:T

(The app case of the Substitution Lemma is similar but we use induction
twice at once to get the new derivation)

-

/

Dan Grossman CSE505 Fall 2009, Lecture 8

15

/Adding Stuff

e Extend the syntax

e Extend the operational semantics
— Derived forms (syntactic sugar) (with/without types)

— Direct semantics
e Extend the type system

e Consider soundness (stuck states, proof changes)

-

Dan Grossman CSE505 Fall 2009, Lecture 8

/I_et bindings (CBV)

e:::...|let:1:=el il’lez

/

let z = ejinex; — let z =€) in e

I'e : 7 L,z: 7'+ ey

-

let £ = v in ex — ex[v/x]

e T

I'HFletx =eyiney : 7T

(Also need to extend definition of substitution...)
Progress: If e is a let, 1 of the 2 rules apply (using induction).
Preservation: Uses Substitution Lemma

Substitution Lemma: Uses Weakening and Exchange

Dan Grossman

CSE505 Fall 2009, Lecture 8

17

/Derived forms \

let seems just like A, so can make it a derived form: let * = e in es

a “macro” (derived form) (Azx. ez) e;.
(Harder (7) if A needs explicit type.)

Or just define the semantics to replace let with A:

let t = ey in ex — (Ax. e3) €3
These 3 semantics are different in the state-sequence sense
(61 — €92 —/™ ... —>€n).
But (totally) equivalent and you could prove it (not hard).
Note: ML type-checks let and X differently. (Later.)

Note: Don't desugar early if it hurts error messages!

- /

Dan Grossman CSE505 Fall 2009, Lecture 8

18

/I\/Iore fto come...

-

We'll continue making extensions next time.

Dan Grossman

CSE505 Fall 2009, Lecture 8

19

