
'

&

$

%

CSE 505:
Concepts of Programming Languages

Dan Grossman

Fall 2009

Lecture 7— Reduction Strategies; Substitution;

Simply Typed Lambda Calculus

Dan Grossman CSE505 Fall 2009, Lecture 7 1

'

&

$

%

Review

λ-calculus syntax:
e ::= λx. e | x | e e

v ::= λx. e

Call-By-Value Left-Right Small-Step Operational Semantics:

e → e′

(λx. e) v → e[v/x]

e1 → e′
1

e1 e2 → e′
1 e2

e2 → e′
2

v e2 → v e′
2

Dan Grossman CSE505 Fall 2009, Lecture 7 2

'

&

$

%

Where are we

• Motivation for a new model

• CBV lambda calculus using substitution

• Notes on concrete syntax

• Simple Lambda encodings (it’s Turing complete!)

• Next: Other reduction strategies

• Defining substitution

Dan Grossman CSE505 Fall 2009, Lecture 7 3

'

&

$

%

Reduction “Strategies”

Suppose we allowed any substitution to take place in any order:

e → e′

(λx. e) e′ → e[e′/x]

e1 → e′
1

e1 e2 → e′
1 e2

e2 → e′
2

e1 e2 → e1 e′
2

e → e′

λx. e → λx. e′

Programming languages don’t typically do this, but it has uses:

• Optimize/pessimize/partially evaluate programs

• Prove programs equivalent by reducing them to the same term

Dan Grossman CSE505 Fall 2009, Lecture 7 4

'

&

$

%

Church-Rosser

What order you reduce is a “strategy”; equivalence is undecidable

Non-obvious fact (“Confluence” or “Church-Rosser”): In this pure

calculus, if e →∗ e1 and e →∗ e2, then there exists an e3 such that

e1 →∗ e3 and e2 →∗ e3.

“No strategy gets painted into a corner”

• Useful: No rewriting via the full-reduction rules prevents you from

getting an answer (Wow!)

Any rewriting system with this property is said to, “have the

Church-Rosser property.”

Dan Grossman CSE505 Fall 2009, Lecture 7 5

'

&

$

%

Some more equivalences

We can add two more rewritings:

• Replace λx. e with λy. e′ where e′ is e with “free” x replaced

with y.

• Replace λx. e x with e if x does not occur “free” in e.

With these, plus full reduction, plus “letting rules run either direction”

we have a “complete” rewriting system for equivalence.

• Under the accepted denotational semantics (not in 505), two

expressions denote the same thing if and only if this rewriting

system can turn one into the other. (Wow!)

Dan Grossman CSE505 Fall 2009, Lecture 7 6

'

&

$

%

Some other common semantics

We have seen “full reduction” and left-to-right CBV.

(Caml is unspecified order, but actually right-to-left.)

Claim: Without assignment, I/O, exceptions, . . . you cannot

distinguish left-to-right CBV from right-to-left CBV.

Another option is call-by-name (CBN):

e → e′

(λx. e) e′ → e[e′/x]

e1 → e′
1

e1 e2 → e′
1 e2

Even “smaller” than CBV!

Diverges strictly less often than CBV, e.g., (λy. λz. z)e. Can be

faster (fewer steps), but not usually (reuse args).

Dan Grossman CSE505 Fall 2009, Lecture 7 7

'

&

$

%

More on evaluation order

In “purely functional” code, evaluation order “only” matters for

performance and termination.

Example: Imagine CBV for conditionals!

let rec f n = if n=0 then 1 else n*(f (n-1))

Call-by-need or “lazy evaluation”: “Best of both worlds”? (E.g.:

Haskell) Evaluate the argument the first time it’s used. Memoize the

result. (Useful idiom for coders too.)

Can be formalized, but it’s not pretty.

For purely functional code, total equivalence with CBN and same

asymptotic time as CBV. (Note: asymptotic!) Hard to reason about if

language has side-effects.

Dan Grossman CSE505 Fall 2009, Lecture 7 8

'

&

$

%

More on Call-By-Need

This course will mostly assume Call-By-Value.

Haskell uses Call-By-Need.

Example:

four = length (9:(8+5):17:42:[])

eight = four + four

main = do { putStrLn (show eight) }

Example:

ones = 1 : ones

nats_from x = x : (nats_from (x + 1))

Dan Grossman CSE505 Fall 2009, Lecture 7 9

'

&

$

%

Formalism not done yet

Need to define substitution—shockingly subtle

Informally: e[e′/x] “ replaces occurrences of x in e with e′ ”

e1[e2/x] = e3

Attempt 1:

x[e/x] = e

y 6= x

y[e/x] = y

e1[e/x] = e′
1

(λy. e1)[e/x] = λy. e′
1

e1[e/x] = e′
1 e2[e/x] = e′

2

(e1 e2)[e/x] = e′
1 e′

2

Dan Grossman CSE505 Fall 2009, Lecture 7 10

'

&

$

%

Getting substitution right

Attempt 2:

e1[e/x] = e′
1 y 6= x

(λy. e1)[e/x] = λy. e′
1 (λx. e1)[e/x] = λx. e1

What if e is y or λz. y or, in general y is free in e? This mistake is

called capture.

It doesn’t happen under CBV/CBN if our source program has no free

variables.

Can happen under full reduction.

Dan Grossman CSE505 Fall 2009, Lecture 7 11

'

&

$

%

Another Try

Attempt 3:

First define the “free variables of an expression” FV (e):

FV (x) = {x}
FV (e1 e2) = FV (e1) ∪ FV (e2)

FV (λx. e) = FV (e) − {x}

Now define substitution with these rules for functions:

e1[e/x]=e′
1 y 6=x y 6∈FV (e)

(λy. e1)[e/x] = λy. e′
1 (λx. e1)[e/x] = λx. e1

But a partial definition (as stands, could get stuck because there is no

substitution).

Dan Grossman CSE505 Fall 2009, Lecture 7 12

'

&

$

%

Implicit Renaming

• A partial definition because of the syntactic accident that y was

used as a binder (should not be visible – local names shouldn’t

matter).

• So we allow implicit systematic renaming (of a binding and all its

bound occurrences).

• So the left rule can always apply (can drop the right rule).

• In general, we never distinguish terms that differ only in the

names of variables. (A key language-design principle!)

• So now even “different syntax trees” can be the “same term”.

Dan Grossman CSE505 Fall 2009, Lecture 7 13

'

&

$

%

Summary and some jargon

• If everything is a function, every step involves an application:

(λx. e)e′ → e[e′/x] (called β-reduction)

• Substitution avoids capture via implicit renaming (called

α-conversion)

• With full reduction, (λx. e x) → e makes sense if x 6∈ FV (e)
(called η-reduction), for CBV it can change termination behavior

– But advanced Camlers scoff at fun x -> f x, since that’s

equivalent to f.

Most languages use CBV application, some use call-by-need.

Our Turing-complete language models functions and encodes

everything else.

Dan Grossman CSE505 Fall 2009, Lecture 7 14

'

&

$

%

Why types?

Our untyped λ-calculus is universal, like assembly language. But we

might want to allow fewer programs

1. Catch “simple” mistakes (e.g., “if” applied to “mkpair”) early

(but a decidable type system must be conservative)

2. (Safety) Prevent getting stuck (e.g., x e) (but for pure

λ-calculus, just need to prevent free variables)

3. Enforce encapsulation (an abstract type)

• clients can’t break invariants

• clients can’t assume an implementation

• requires safety

Continued...

Dan Grossman CSE505 Fall 2009, Lecture 7 15

'

&

$

%

Why types? continued

4. Assuming well-typedness allows faster implementations

• smaller interfaces enable optimizations

• don’t have to check for being stuck

• orthogonal to safety (e.g., C)

5. Syntactic overloading (not too interesting)

• “late binding” (via run-time types) very interesting

6. Detect other errors via extensions (often “effect systems”)

• dangling pointers, data races, uncaught exceptions, tainted

data, ... analysis, ...

(Deep similarities in analyses suggest type systems a, “good way

to think-about/define/prove what you’re checking”)

We’ll really focus on (1), (2), and (3) though (plus (6) if have time)

Dan Grossman CSE505 Fall 2009, Lecture 7 16

'

&

$

%

What is a type system?

Er, uh, you know it when you see it. Some clues:

• A decidable (?) judgment for classifying programs (e.g., e1 + e2

has type int if e1 and e2 have type int else it has no type)

• Fairly syntax directed (non-example??: e terminates within 100

steps)

• A sound (?) abstraction of computation (e.g., if e1 + e2 has type

int, then evaluation produces an int (with caveats!))

This is a CS-centric, PL-centric view. Foundational type theory has

more rigorous answers (type systems are proof systems for logics)

Dan Grossman CSE505 Fall 2009, Lecture 7 17

'

&

$

%

Plan for a couple weeks

• Simply typed λ calculus (STλC)

• (Syntactic) Type Soundness (i.e., safety)

• Extensions (pairs, sums, lists, recursion)

Then break for the Curry-Howard isomorphism; continuations; midterm

• Subtyping

• Polymorphic types (generics)

• Effect systems (?)

• Recursive types

• Abstract types

Homework: Adding back mutation

Omitted: Type inference

Dan Grossman CSE505 Fall 2009, Lecture 7 18

'

&

$

%

Adding constants

Let’s add integers to our CBV small-step λ-calculus:

e ::= λx. e | x | e e | c

v ::= λx. e | c

We could add + and other primitives or just parameterize “programs”

by them: λplus. e. (Like Pervasives in Caml.)

e → e′

(λx. e) v → e[v/x]

e1 → e′
1

e1 e2 → e′
1 e2

e2 → e′
2

v e2 → v e′
2

What are the stuck states? Why don’t we want them?

Dan Grossman CSE505 Fall 2009, Lecture 7 19

'

&

$

%

Wrong Attempt

τ ::= int | fn

` e : τ

` λx. e : fn ` c : int

` e1 : fn ` e2 : int

` e1 e2 : int

1. NO: can get stuck, (λx. y) 3

2. NO: too restrictive, (λx. x 3) (λy. y)

3. NO: types not preserved, (λx. λy. y) 3

Dan Grossman CSE505 Fall 2009, Lecture 7 20

'

&

$

%

Getting it right

1. Need to type-check function bodies, which have free variables

2. Need to distinguish functions according to argument and result

types

For (1): Γ ::= · | Γ, x : τ and Γ ` e : τ .

For (2): τ ::= int | τ → τ (an infinite number of types)

E.g.s: int → int, (int → int) → int, int → (int → int).

Concrete syntax note: → is right-associative, so

τ1 → τ2 → τ3 is τ1 → (τ2 → τ3).

Dan Grossman CSE505 Fall 2009, Lecture 7 21

'

&

$

%

STλC Type System

τ ::= int | τ → τ

Γ ::= · | Γ, x:τ

Γ ` e : τ

Γ ` c : int Γ ` x : Γ(x)

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

The function-introduction rule is the interesting one...

Dan Grossman CSE505 Fall 2009, Lecture 7 22

'

&

$

%

A closer look

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

1. Where did τ1 come from?

• Our rule “inferred” or “guessed” it.

• To be syntax directed, change λx. e to λx : τ . e and use

that τ .

2. Can think of “adding x” as shadowing or requiring x 6∈ Dom(Γ).
Systematic renaming (α-conversion) ensures x 6∈ Dom(Γ) is not

a problem.

3. Still “too restrictive”. E.g.: (λx. (x (λy. y)) (x 3)) λz. z does

not get stuck, but doesn’t type-check

• ((λz. z)(λy. y))((λz. z) 3) type-checks though)

Dan Grossman CSE505 Fall 2009, Lecture 7 23

'

&

$

%

Always restrictive

“gets stuck” undecidable: If e has no constants or free variables, then

e (3 4) (or e x) gets stuck iff e terminates.

Old conclusion: “Strong types for weak minds” – need back door

(unchecked cast)

Modern conclusion: Make “false positives” (reject safe program) rare

and “false negatives” (allow unsafe program) impossible. Be

Turing-complete and convenient even when having to “work around” a

false positive.

Justification: false negatives too expensive, have resources to use

fancy type systems to make “rare” a reality.

Dan Grossman CSE505 Fall 2009, Lecture 7 24

'

&

$

%

Evaluating STλC

1. Does STλC prevent false negatives? Yes.

2. Does STλC make false positives rare? No. (A starting point)

Big note: “Getting stuck” depends on the semantics. If we add

c v → 0 and x v → 42 we “don’t need” a type system. Or we could

say c v and x v “are values”.

That is, the language dictator deemed c e and free variables bad (not

“answers” and not “reducible”). Our type system is a conservative

checker that they won’t occur.

Dan Grossman CSE505 Fall 2009, Lecture 7 25

'

&

$

%

Type Soundness

We will take a syntactic (operational) approach to soundness/safety

(the popular way since the early 90s). . .

Thm (Type Safety): If · ` e : τ then e diverges or e →n v for an n

and v such that · ` v : τ .

• That is, if · ` e : τ and e →n e′, then e′ is not stuck (it might

be a value).

Proof: By induction on n using the next two lemmas.

Lemma (Preservation): If · ` e : τ and e → e′, then · ` e′ : τ .

Lemma (Progress): If · ` e : τ , then e is a value or there exists an e′

such that e → e′.

Dan Grossman CSE505 Fall 2009, Lecture 7 26

