CSE 505:
Concepts of Programming Languages

Dan Grossman
Fall 2009
Lecture 6— Lambda Calculus

-

Dan Grossman CSE505 Fall 2009, Lecture 6

/VVhere we are

e Done: Syntax, semantics, and equivalence

— As long as all you have is loops and global variables

e Now: Didn't IMP leave some things out?

— Particularly scope, functions, and data structures

Time for a new model... (Pierce, chapter 5)

-

— (Not to mention threads, 1/O, exceptions, strings, ..

)

Dan Grossman CSE505 Fall 2009, Lecture 6

/Data + Code

~

Higher-order functions work well for scope and data structures.

e Scope: not all memory available to all code

let x = 1
let add3 y
let z =

in

N N

X +y +
let seven = add3 4

e Data: Function closures store data. Example: Association “list”

let empty = (fun k -> raise Empty)

let lookup k 1lst = 1st k

(Later: Objects do both too)

let cons k v 1st = (fun k’ -> if k’=k then v else 1lst k

/

Dan Grossman CSE505 Fall 2009, Lecture 6

”)

/Adding data structures

Extending IMP with data structures isn't too hard:

e == c|lx|et+e|lexe]|(ee)]|el]|e.2

v c| (v,v)

| Hyx — v

H:ellc

Hieivi Hiexlva Hiel(vi,v2) Hiel(vy,vz)

H;(e1, e2)(v1,v2) H;e.1{v H;e.2|vsy

Note: We allow pairs of values, not just pairs of integers

Note: We now have stuck programs (e.g., ¢.1) — what would C++
do? Scheme? ML? Java? Perl?

\\Note: Division also causes stuckness

Dan Grossman

CSE505 Fall 2009, Lecture 6

/VVhat about functions \

e

S =

But adding functions (or objects) does not work well:

oo | fun & -> s

... | e(e)

H:ellc

H;s— H ;s

H:eq|fun x -> s H:eollv

-

H;fun © -> s{{funx ->s H ;ei(ez) — H ;x:=v;s

Does this match “the semantics we want” for function calls?

/

Dan Grossman

CSE505 Fall 2009, Lecture 6

/VVhat about functions \

But adding functions (or objects) does not work well:

e = ...|funx->s
s == ...|e(e)
Heq{fun x -> s H:es v
Hifun x -> s{fun « -> s H ;ei(ex) > H 5 x :=v;s

NO: Consider x := 1; (fun x -> y := x)(2); ans := x.
Scope matters; variable name doesn’t. That is:

e L ocal variables should “be local”

e Choice of local-variable names should have only local ramifications

- /

Dan Grossman CSE505 Fall 2009, Lecture 6

/Another try

Heq{fun x -> s Hes v y “fresh”

H ;ei(ex) > H;y:=x5x:=v;8c:=1y
e “fresh” isn't very IMP-like but okay (think malloc)
e not a good match to how functions are implemented
e yuck

e NO: wrong model for most functional and OO languages
(even wrong for C if s calls another function that accesses the

global variable x)

.

/

Dan Grossman CSE505 Fall 2009, Lecture 6

ﬂl’he wrong model \

H:eil{fun x -> s H:esllv y “fresh”

H ;ei(ex) > H;y:=x;x:=v;8,8:=1y

f1 := (fun x -> f5 := (fun z -> ans := x + z));
£1(2);
X 1= 3;
f2(4)
“Should” set ans to 6:

e f1(2) should assign to £ a function that adds 2 to its argument
and stores result in ans.

“Actually” sets ans to 7:

e f5(2) assigns to fo a function that adds the current value of x to

\\ Its argument. /

Dan Grossman CSE505 Fall 2009, Lecture 6

/Punch line \

The way higher-order functions and objects work is not modeled by

mutable global variables. So let’s build a new model that focuses on
this essential concept (can add other IMP features back later).

(Or just borrow a model from Alonzo Church.)
And drop mutation, conditionals, integers (!), and loops (!)
The Lambda Calculus:
e = Ar.e|x|ee
v = Ax.e
You apply a function by substituting the argument for the bound
variable.

(There's an equivalent environment definition not unlike heap-copying;

\iee future homework.) /

Dan Grossman CSE505 Fall 2009, Lecture 6

/Example Substitutions

e = Ar.e|x|ee

v = Azx.e
Substitution is the key operation we were missing:
(Az. z)(Ay. y) — (Ay. y)
(Ax. Ay. y x)(Az. 2) — (Ay. y Az. 2)

(Ax. z x)(Ax. ¢) — (Ax. ¢)(Ax. ©)

After substitution, the bound variable is gone, so its “name” was
irrelevant. (Good!)

There are irreducible expressions (x e)

-

Dan Grossman CSE505 Fall 2009, Lecture 6

10

/A Programming Language \

Given substitution (eq[ez/x]), we can give a semantics:

e — e’

/
e1 — €} ez — €,

(Axz.e) v — e[v/x] e1ex — €] ex vex— v e,
A small-step, call-by-value (CBV), left-to-right semantics
e Terminates when the “whole program” is some Ax. e

But (also) gets stuck when there's a free variable “at top-level”
(Won't “cheat” like we did with H(x) in IMP because scope is what
we're interested in)

This is the “heart” of functional languages like Caml (but “real”

anlementations don’t substitute; they do something equivalent) /

Dan Grossman CSE505 Fall 2009, Lecture 6

11

/VVhere are we

e Motivation for a new model (done)

e CBV lambda calculus using substitution (done)

e Notes on concrete syntax

e Simple Lambda encodings (it's Turing complete!)
e Other reduction strategies

e Defining substitution

-

Dan Grossman CSE505 Fall 2009, Lecture 6

/Syntax Revisited

We (and Caml) resolve concrete-syntax ambiguities as follows:
1. Ax. e ez is (Ax. ey e3), not (Ax. e1) es

2. €1 €92 €3 IS (61 62) €3, not e (62 63)
(Convince yourself application is not associative)

More generally:

1. Function bodies extend to an unmatched right parenthesis
Example: (Axz. y(Az. z)w)q

2. Application associates to the left

Example: e; ez e3 eq is (((e1 e2) e3) eq).
e These strange-at-first rules are convenient

e Like in IMP, we really have trees
\\ (with non-leaves labeled A or “application”)

Dan Grossman CSE505 Fall 2009, Lecture 6

13

/Simple encodings

Fairly crazy: we left out constants, conditionals, primitives, and data
structures

In fact, we're Turing complete and can encode whatever we need

Motivation for encodings:
e Fun and mind-expanding

e Shows we aren’'t oversimplifying the model
(“numbers are syntactic sugar”)

e Can show languages are too expressive
(e.g., unlimited C++ template instantiation)

Encodings are also just “(re)definition via translation”

-

Dan Grossman CSE505 Fall 2009, Lecture 6

14

/Encoding booleans \

There are two booleans and one conditional expression. The

conditional takes 3 arguments (via currying). If the first is one boolean

It evaluates to the second. If it's the other boolean it evaluates to the
third.

Any 3 expressions meeting this specification (of “the boolean ADT")
Is an encoding of booleans.

“true” Ax. \y. x

“false” Ax. A\y. y
GTAb. AL AF. DL f
This is just one encoding.

E.g.: “if" “true” vq vg —* v;.

- /

Dan Grossman CSE505 Fall 2009, Lecture 6

15

/Evaluation Order Matters

Careful: With CBV we need to “thunk”...
‘it “true” (Ax.) (Ax. ¢) (Ax. © x))

an infinite loop

diverges, but
if" Mtrue” (Az. z) (Az. ((Az. z z)(Az. 2))2))

a value that when called diverges

doesn't.

-

Dan Grossman CSE505 Fall 2009, Lecture 6

16

~

/Encoding pairs

The “pair ADT" has a constructor taking two arguments and two
selectors. The first selector returns the first argument passed to the

constructor and the second selector returns the second.

“mkpair’ Ax. A\y. Az. z x y
“fst” Ap. p(Ax. Ay. x)
“snd” Ap. p(Ax. A\y. y)
Example:

“snd” (“fst” (“mkpair’ (“mkpair" vy v2) v3)) —* Vo

- /

CSE505 Fall 2009, Lecture 6

Dan Grossman

17

/Encoding lists

~

Rather than start from scratch, notice that booleans and pairs are
enough:

e Empty list is “mkpair’ “false” “false”

e Non-empty list is “mkpair” “true” (“mkpair” h t)
o Is-empty is ...

e Head is ...

o Tail is ...

(Not too far from how lists are implemented.)

-

Dan Grossman CSE505 Fall 2009, Lecture 6

18

/Encoding natural numbers

~

Known as “Church numerals” — see the text (or don't bother).

We can define the naturals as “zero”, a “successor” function, an

equal” function, a “plus” function, etc.

The encoding is correct if “is equal” always returns what it should,
e.g., is-equal (plus (succ zero) (succ zero)) (succ(succ zero))

should evaluate to “true”

-

His

Dan Grossman CSE505 Fall 2009, Lecture 6

19

/Recu rsion \

Some programs diverge, but can we write useful loops? Yes!

To write a recursive function:

e Write a function that takes an f and calls it in place of recursion
— Example (in enriched language):
Af. Ax. if (x = 0) then 1 else (x * f(x — 1))
e Then apply “fix" to it to get a recursive function:

— “fix" Af. Azx. if (x = 0) then 1 else (z * f(x — 1))

o “fix’ Af. e will reduce to something roughly equivalent to
e[("fix’ Af. e)/ f], which is “unrolling the recursion once” (and
further unrollings will happen as necessary).

e The details, especially for CBV, are icky; the point is it's possible
and you define “fix’ only once

\\o Not on exam: “fix” Af. Ax. f Ay. x x y))(Ax. f (Ay. x = y))/

Dan Grossman CSE505 Fall 2009, Lecture 6

20

/VVhere are we

e Motivation for a new model

e CBV lambda calculus using substitution

e Notes on concrete syntax

e Simple Lambda encodings (it's Turing complete!)
e Next: Other reduction strategies

e Defining substitution

-

Dan Grossman CSE505 Fall 2009, Lecture 6

