CSE 505:
Concepts of Programming Languages

Dan Grossman
Fall 2009
Lecture 5— Little Trusted Languages; Equivalence
Where are we

Today is IMP’s last lecture (hooray!). Done:

- Abstract Syntax
- Operational Semantics (large-step and small-step)
- Semantic properties of (sets of) programs
- “Pseudo-Denotational” Semantics

Today:

- Packet-filter languages and other examples
- Equivalence of programs in a semantics
- Equivalence of different semantics

Next time: Local variables, lambda-calculus
Packet Filters

Almost everything I know about packet filters:

- Some bits come in off the wire
- Some application(s) want the “packet” and some do not (e.g., port number)
- For safety, only the O/S can access the wire
- For extensibility, only an application can accept/reject a packet

Conventional solution goes to user-space for every packet and app that wants (any) packets

Faster solution: Run app-written filters in kernel-space
What we need

Now the O/S writer is defining the packet-filter language!

Properties we wish of (untrusted) filters:

1. Don’t corrupt kernel data structures
2. Terminate (within a time bound)
3. Run fast (the whole point)

Should we download some C/assembly code? (Get 1 of 3)

Should we make up a language and “hope” it has these properties?
Language-based approaches

1. Interpret a language.
 + clean operational semantics, + portable, - may be slow (+ filter-specific optimizations), - unusual interface

2. Translate a language into C/assembly.
 + clean denotational semantics, + employ existing optimizers, - upfront cost, - unusual interface

3. Require a conservative subset of C/assembly.
 + normal interface, - too conservative w/o help

IMP has taught us about (1) and (2) — we’ll get to (3)
A General Pattern

Packet filters move the code to the data rather than data to the code.

General reasons: performance, security, other?

Other examples:

- Query languages
- Active networks
- Client-side web scripts (JavaScript)
Equivalence motivation

- Program equivalence (change program): code optimizer, code maintainer
- Semantics equivalence (change language): interpreter optimizer, language designer (prove properties for equivalent semantics with easier proof)

Warning: Proofs are easy with the right semantics and lemmas

Note: Small-step often has harder proofs but models more interesting things
What is equivalence

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same \textit{ans})
 - \texttt{while 1 skip} equivalent to everything
 - not transitive

- Total I/O (same termination behavior, same \textit{ans})

- Total heap equivalence (at termination, all (almost all) variables have the same value)

- Equivalence plus complexity bounds
 - Is $O(2^n)$ really equivalent to $O(n)$?

- Syntactic equivalence (perhaps with renaming)
 - too strict to be interesting
Program Example: Strength Reduction

Motivation: Strength reduction a common compiler optimization due to architecture issues.

Theorem: $H; e * 2 \Downarrow c$ if and only if $H; e + e \Downarrow c$.

Proof sketch: Just need “inversion of derivation” and math (hmm, no induction).
Program Example: Nested Strength Reduction

Theorem: If e' has a subexpression of the form $e \ast 2$, then $H; e' \downarrow c'$ if and only if $H; e'' \downarrow c'$ where e'' is e' with $e \ast 2$ replaced with $e + e$.

First some useful metanotation:

$$C ::= [\cdot] \mid C + e \mid e + C \mid C \ast e \mid e \ast C$$

$C[e]$ is “C with e in the hole”.

So: If $(e_1 = C[e \ast 2]$ and $e_2 = C[e + e])$, then $(H; e_1 \downarrow c'$ if and only if $H; e_2 \downarrow c'$).

Proof sketch: By induction on structure (“syntax height”) of C.
Small-step program equivalence

These sort of proofs also work with small-step semantics (e.g., our IMP statements), but tend to be more cumbersome, even to state.

Example: The statement-sequence operator is associative. That is,

(a) For all n, if $H ; s_1; (s_2; s_3) \rightarrow^n H' ; \text{skip}$ then there exist H'' and n' such that $H ; (s_1; s_2); s_3 \rightarrow^{n'} H'' ; \text{skip}$ and $H''(\text{ans}) = H'(\text{ans})$.

(b) If for all n there exist H' and s' such that $H ; s_1; (s_2; s_3) \rightarrow^n H' ; s'$, then for all n there exist H'' and s'' such that $H ; (s_1; s_2); s_3 \rightarrow^n H'' ; s''$.

(Proof needs a much stronger induction hypothesis.)

One way to avoid it: Prove large-step and small-step semantics equivalent, then prove program equivalences in whichever is easier.
Language Equivalence Example

IMP w/o multiply:

<table>
<thead>
<tr>
<th>CONST</th>
<th>VAR</th>
<th>ADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>[H ; c \downarrow c]</td>
<td>[H ; x \downarrow H(x)]</td>
<td>[H ; e_1 \downarrow c_1] [H ; e_2 \downarrow c_2]</td>
</tr>
</tbody>
</table>

IMP w/o multiply small-step:

<table>
<thead>
<tr>
<th>SVAR</th>
<th>SADD</th>
<th>SLEFT</th>
<th>SRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>[H ; x \rightarrow H(x)]</td>
<td>[H ; c_1 + c_2 \rightarrow c_1 + c_2]</td>
<td>[H ; e_1 \rightarrow e'_1]</td>
<td>[H ; e_2 \rightarrow e'_2]</td>
</tr>
</tbody>
</table>

\[H ; e_1 + e_2 \rightarrow e'_1 + e_2 \]

\[H ; e_1 + e_2 \rightarrow e_1 + e'_2 \]

Theorem: Semantics are equivalent, i.e., \[H ; e \downarrow c \] if and only if \[H ; e \rightarrow^* c \].

Proof: We prove the two directions separately.
Proof, part 1:

First assume $H ; e \Downarrow c$; show $\exists n. H ; e \rightarrow^n c$.

Lemma (prove it!): If $H ; e \rightarrow^n e'$, then $H ; e_1 + e \rightarrow^n e_1 + e'$ and $H ; e + e_2 \rightarrow^n e' + e_2$. (Proof uses \textsc{sleft} and \textsc{sright}.)

Given the lemma, prove by induction on height h of derivation of $H ; e \Downarrow c$:

- $h = 1$: Derivation is via \textsc{const} (so $H ; e \rightarrow^0 c$) or \textsc{var} (so $H ; e \rightarrow^1 c$).

- $h > 1$: Derivation ends with \textsc{add}, so e has the form $e_1 + e_2$, $H ; e_1 \Downarrow c_1$, $H ; e_2 \Downarrow c_2$, and c is $c_1 + c_2$.

 By induction $\exists n_1, n_2. H ; e_1 \rightarrow^{n_1} c_1$ and $H ; e_2 \rightarrow^{n_2} c_2$.

 So by our lemma $H ; e_1 + e_2 \rightarrow^{n_1} c_1 + e_2$ and $H ; c_1 + e_2 \rightarrow^{n_2} c_1 + c_2$.

 So \textsc{sadd} lets us derive $H ; e_1 + e_2 \rightarrow^{n_1+n_2+1} c$.
Proof, part 2:

Now assume \(\exists n. H; e \rightarrow^n c \); show \(H ; e \downarrow c \). By induction on \(n \):

- \(n = 0 \): \(e \) is \(c \) and \textsc{const} lets us derive \(H ; c \downarrow c \).

- \(n > 0 \): \(\exists e' \). \(H; e \rightarrow e' \) and \(H; e' \rightarrow^{n-1} c \).

 By induction \(H ; e' \downarrow c \).

So this lemma suffices: If \(H; e \rightarrow e' \) and \(H ; e' \downarrow c \), then \(H ; e \downarrow c \).

Prove the lemma by induction on height \(h \) of derivation of \(H; e \rightarrow e' \):

- \(h = 1 \): Derivation ends with \textsc{svar} (so \(e' = c = H(x) \) and \textsc{var} gives \(H ; x \downarrow H(x) \)) or with \textsc{sadd} (so \(e \) is some \(c_1 + c_2 \) and \(e' = c = c_1 + c_2 \) and \textsc{add} gives \(H ; c_1 + c_2 \downarrow c_1 + c_2 \)).

- \(h > 1 \): Derivation ends with \textsc{sleft} or \textsc{sright} ...
Proof, part 2 continued:

If e has the form $e_1 + e_2$ and e' has the form $e'_1 + e_2$, then the assumed derivations end like this:

\[
\begin{align*}
&H; e_1 \rightarrow e'_1 \\
&H; e_1 + e_2 \rightarrow e'_1 + e_2 \\
&H; e'_1 \downarrow c_1 \\
&H; e'_1 + e_2 \downarrow c_1 + c_2
\end{align*}
\]

Using $H; e_1 \rightarrow e'_1$, $H; e'_1 \downarrow c_1$, and the induction hypothesis, $H; e_1 \downarrow c_1$. Using this fact, $H; e_2 \downarrow c_2$, and ADD, we can derive $H; e_1 + e_2 \downarrow c_1 + c_2$.

(If e has the form $e_1 + e_2$ and e' has the form $e_1 + e'_2$, the argument is analogous to the previous case (prove it!).)
A nice payoff

Theorem: The small-step semantics is deterministic, i.e., if $H; e \rightarrow^* c_1$ and $H; e \rightarrow^* c_2$, then $c_1 = c_2$.

Not obvious (see SLEFT and SRIGHT), nor do I know a direct proof.

- Given $(((1 + 2) + (3 + 4)) + (5 + 6)) + (7 + 8)$ there are many execution sequences, which all produce 36 but with different intermediate expressions.

Proof:

- Large-step evaluation is deterministic (easy proof by induction).
- Small-step and and large-step are equivalent (just proved that).
- So small-step is deterministic.
- (Convince yourself a deterministic and a nondeterministic semantics can’t be equivalent with our definition of equivalence.)
Conclusions

- Equivalence is a subtle concept.
- Proofs “seem obvious” only when the definitions are right.
- Some other language-equivalence claims:

 Replace `WHILE` rule with

 \[
 \begin{align*}
 H; e \downarrow c & \quad c \leq 0 \\
 \hline
 H; \text{while } e \ s \rightarrow H; \text{skip} & \quad H; e \downarrow c \quad c > 0 \\
 \end{align*}
 \]

 Theorem: Languages are equivalent. (True)

 Change syntax of heap and replace `ASSIGN` and `VAR` rules with

 \[
 \begin{align*}
 H; x := e \rightarrow H, x \mapsto e; \text{skip} & \quad H; H(x) \downarrow c \\
 \hline
 H; x \downarrow c & \quad H; x \downarrow c
 \end{align*}
 \]

 Theorem: Languages are equivalent. (False)