CSE 505:
Concepts of Programming Languages

Dan Grossman

Fall 2009
Lecture 2— Abstract Syntax

-

Dan Grossman CSE505 Fall 2009, Lecture 2

/Finally, some content

For our first formal language, let's leave out functions, objects,
records, threads, exceptions, ...

What's left: integers, assignment (mutation), control-flow
(Abstract) syntax using a common meta-notation:
“A program is a statement s defined as follows”
s u= skip|xz:=e|s;s|if ess|whilees
e = clx|et+e|exe
c € {..,—-2,-1,0,1,2,...})

(:1: - {Xl,Xz,...,yl,Y2,...,Zl,Zz,...,...})

-

Dan Grossman CSE505 Fall 2009, Lecture 2

/Syntax definition

E.

-

s == skip|x:=e|s;s|if ess|whilees
e == clx|et+e|exe
c € {..,—2,-1,0,1,2,...})
(x € {X19X2yeeesT1sY25ec9Z19Z29cvcsess}))
e Blue is metanotation (::= ‘“can be a", | “or"
e Metavariables represent “anything in the syntax class”

e Use parentheses to disambiguate, e.g., if x skipy := 05z := 0

g.y:=1;whilex (y:=y*x;x:=x—1)

/

Dan Grossman CSE505 Fall 2009, Lecture 2

/Inductive definition \

s u= skip|xz:=e|s;s|if ess|whilees

e = c|lx|et+e|exe

With care, our syntax definition is not circular!
o |et E() = 0

e Forz > 0, let E/; be E;_1 union “expressions of the form ¢, x,

e1 + ez, or eq *x es whereeyj,eq € E;_1".
The set E is what we mean by our compact metanotation.

To get it: What set is 17 FE5?

\\Could explain statements the same way. What is §77 S57? /

Dan Grossman CSE505 Fall 2009, Lecture 2

/Proving Obvious Stuff

~

idea of proving things carefully...

Theorem 1: There exist expressions with three constants.

-

All we have is syntax (sets of abstract-syntax trees), but let’s get the

Dan Grossman CSE505 Fall 2009, Lecture 2

/Our First Theorem \

There exist expressions with three constants.

Pedantic Proof: Consider e = 1 + (2 4+ 3). Showing e € FEj3 suffices
because E3 C E. Showing 2 + 3 € E5 and 1 € E5 suffices...

PL-style proof: Consider e = 1 + (2 + 3) and definition of E.

Theorem 2: All expressions have at least one constant or variable.

- /

Dan Grossman CSE505 Fall 2009, Lecture 2

/Our Second Theorem

~

-

or variable.

BEEi_l---
€ =¢cC...
e =x...

All expressions have at least one constant or variable.

e Base: ¢ = 0 implies E; = 0

e Inductive: ¢ > 0. Consider arbitrary e € E; by cases:

e —e; + ez whereej,e0 € E;_ 1 ...

€ = €1 * €2 where ei1,en € Ef,;_l

Pedantic proof: By induction on ¢, for all e € E;, e has > 1 constant

Dan Grossman

CSE505 Fall 2009, Lecture 2

/A “Better” Proof \

All expressions have at least one constant or variable.

PL-style proof: By structural induction on (rules for forming an
expression) e. Cases:

® C...
o r ...
061—|—62...
® €1 €9 ...

Structural induction invokes the induction hypothesis on smaller
terms. It is equivalent to the pedantic proof, and the convenient way.

- /

Dan Grossman CSE505 Fall 2009, Lecture 2

