CSE 505:
Concepts of Programming Languages

Dan Grossman
Fall 2009
Lecture 18— Bounded Polymorphism and Classless OOP

-

Dan Grossman CSE505 Fall 2009, Lecture 18

/Revenge of Type Variables

Sorted lists in ML (partial):

type ’a slist
make : (’a -> ’a -> int) -> ’a slist
cons : ’a slist -> ’a -> ’a slist

find : ’a slist -> ’a -> ’a option
Getting by with OO subtyping:

interface Cmp { Int f(Object,0Object); }
class SList {
. some field definitions ...
constructor (Cmp x) {...}
Slist cons(Object x) {...}
Object find(Object x) {...}

N

Dan Grossman CSE505 Fall 2009, Lecture 18

/VVanting Type Variables \

Will downcast (potential run-time exception) the arguments to £ and
the result of find.

We are not enforcing list-element type-equality.

OO-style subtyping is no replacement for parametric polymorphism; we
can have both:

interface ’a Cmp { Int £(’a,’a); } // Cmp not a type
class ’a SList { // SList not a type (Int SList e.g. is)
. some field definitions (can use type ’a)
constructor (’a Cmp x) {...}
’a Slist cons(’a x) {...}
’a find(’a) {...}
¥

- /

Dan Grossman CSE505 Fall 2009, Lecture 18

/Same Old Story

~

e Interface and class declarations are parameterized; they produce
types.

e The constructor is polymorphic
— For all T, given a T Cmp, it makes a T SList

e If o has type T SList, its cons method:
— takes a T

— returns a T SList

No more downcasts; the best of both worlds.

-

Dan Grossman CSE505 Fall 2009, Lecture 18

/Complications \

“Interesting’ interaction with overloading and multimethods
class B {

unit £f(Int C x) {...}

unit £(String C x) {...}

+
class ’a C { unit g(B x) { x.f(self); } }

For T C where T is neither Int nor String, can have no match
e Cannot resolve static overloading at compile-time without code
duplication and no abstraction (C++)
e To resolve overloading or multimethods at run-time, need run-time
type information including the instantiation T (C#)

e Could disallow such overloading (Java)

\\o Or could just reject this sort of call as unresolvable (7) /

Dan Grossman CSE505 Fall 2009, Lecture 18

/VVanting bounds

There are compelling reasons to bound the instantiation of type
variables.

Simple example: Use at supertype without losing that it's a subtype

interface I { unit print(); }

class (’a < I) Logger { // must apply to subtype of I
’a 1item;
’a get_it() { syslog(item.print()); item }

+

Without polymorphism or downcasting, client could only use get_it
result for printing.

Without bound or downcasting, Logger could not print.

-

Dan Grossman CSE505 Fall 2009, Lecture 18

/Fancy Example \

With forethought and structural (non-named) subtyping, bounds can

avoid some subtyping limitations.
(Example lifted from “A Theory of Objects” Abadi/Cardelli)

interface Omnivore { unit eat(Food); }

interface Herbivore { unit eat(Veg); } // Veg <= Food

Allowing Herbivore<Omnivore could make a vegetarian eat meat
(unsound)! But this works:

interface (’a < Food) Omnivore { unit eat(’a); }

interface (’a < Veg) Herbivore { unit eat(’a); }

If T Herbivore is legal, then T Omnivore is legal and
(T Herbivore)<(T Omnivore)!

\\Efeﬂﬂfbrunit feed(’a food, ’a Omnivore animal) {...}. 4///

Dan Grossman CSE505 Fall 2009, Lecture 18

/Bounded Polymorphism \

This “bounded polymorphism” is useful in any language with universal
types and subtyping. Instead of Va.7 and A«.e, we have Va < 7/.7

and Aa < 1’.e:

e Change A to be a list of bounds (e < T) instead of a set of type

variables
e In e you can subsume from « to 7’
e e1[11] typechecks only if 7 “satisfies the bound” in type of eq
One metatheory drawback: When is (Va1<7m1.72) < (Vae<73.74)7

e Contravariant bounds and covariant bodies assuming bound are

sound, but makes subtyping undecidable

e Requiring invariant bounds and covariant bodies regains

\\ decidability, but obviously allows less subtyping /

Dan Grossman CSE505 Fall 2009, Lecture 18

/Classless OO0OP

~

OOP gave us code-reuse via inheritance and extensibility via
late-binding.

Can we throw out classes and still get OOP? Yes.

Can it have a type system that prevents “no match found” and “no
best match” errors? Yes, but we won't get there.

This is mind-opening stuff if you've never seen it.

We will make up syntax as we go along...

-

Dan Grossman CSE505 Fall 2009, Lecture 18

/I\/Iake objects directly \

Everything is an object. You can make objects directly:

let p = [
field x = 7;
field y = 9;

right_quad(){ x.gt(0) && y.gt(0) } // cf. 0.1lte(y)
]

p now bound to an object: can invoke its methods and read/write its
fields

No classes: Constructors are easy to encode

let make_pt = [
doit(x0,y0) { [field x=x0; field y=yO;...] }
]

- /

Dan Grossman CSE505 Fall 2009, Lecture 18

10

/Inheritance and Override

~

Building objects from scratch won't get us late-binding and code
reuse. Here's the trick:

e clone method produces a (shallow) copy of an object
e method “slots” can be mutable

let ol = [// still have late-binding
odd(x) {if x.eq(0) then false else self.even(x-1)}
even(x) {if x.eq(0) then true else self.odd(x-1) }
]
let 02 = ol.clone()
o2.even(x) := (x.mod(2)).eq(0)

Language doesn’t grow: just methods and mutable “slots”

Can use for constructors too: clone and assign fields

N

/

Dan Grossman CSE505 Fall 2009, Lecture 18

11

/Extension

~

But that trick doesn’t work to add slots to an object, a common use

of subclassing.

new slot is problematic semantically (what if el has a slot named x)
and for efficiency (may not be room where el is allocated)

Instead, we can build a new object with a special parent slot:

[parent=el; x=e2]

parent is very special because definition of method-lookup (the issu
in OO) depends on it (else this isn't inheritance)

-

Having something like “extend el (x=e2)" that mutates el to have a

€

/

Dan Grossman CSE505 Fall 2009, Lecture 18

12

/I\/Iethod Lookup \

To find the ™ method of o:

e Look for a slot named m
e If not found, look in object held in parent slot

But we still have late-binding: for method in parent slot, we still have

self refer to the original o.

Two inequivalent ways to define parent=el:
e Delegation: parent refers to result of el
e Embedding: parent refers to result of el.clone()

Mutation of result of el (or its parent or grandparent or ...) exposes
the difference. We'll assume delegation.

- /

Dan Grossman CSE505 Fall 2009, Lecture 18

/Oh so flexible \

Delegation is way more flexible (and simple!) (and dangerous!) than
class-based OO: The object being delegated to is usually used like a

class, but its slots may be mutable.

e Assigning to a slot in a delegated object changes every object that

delegates to it (transitively)

— Clever change-propagation but as dangerous as globals and

arguably more subtle?

e Assigning to a parent slot is “dynamic inheritance” — changes

where slots are inherited from

Classes restrict what you can do and how you think, e.g., never
thinking of clever run-time modifications of inheritance

- /

Dan Grossman CSE505 Fall 2009, Lecture 18

/Javascript: A Few Notes \

e Javascript gives assignment “extension” semantics if field not

already there. Implementations use indirection (hashtables).
e parent is called prototype.
e new F(...) creates a new object o, calls F with this bound to

o, and returns o.
— No special notion of constructor.
— Functions are objects too.
— This isn't quite prototype-based inheritance, but can code it
UPp- function inheritFrom(o) A
function F() {}
F.prototype = o;

return new F();

+

\\o No clone (depending on version), but can copy fields explicitly /

Dan Grossman CSE505 Fall 2009, Lecture 18

15

/Rarely what you want \

We have the essence of OOP in a tiny language with more flexibility

than we usually want.

Avoid it via careful coding idioms:

e Create trait/abstract objects: Just immutable methods

— Analogous role to virtual-method tables

e Extend with prototype/template objects: Add mutable fields but
don’t mutate them

— Analogous role to classes

e Clone prototypes to create concrete/normal objects

— Analogous role to objects (clone is constructor)

Traits can extend other traits and prototypes other prototypes

\\o Analogous to subclassing /

Dan Grossman CSE505 Fall 2009, Lecture 18

16

/Coming full circle

~

Without separating first two roles, objects don't share method slots
(wastes space), but immutability avoids danger.

Late-binding still makes method-override work correctly.

This idiom is so important, it's worth having a type system that

enforces it.

For example, a template object cannot have its members accessed

(except clone).

We end up getting close to classes, but from first principles and still

allowing the full flexibility when you want it.

-

/

Dan Grossman CSE505 Fall 2009, Lecture 18

17

/A word on types \

Untyped languages work (the OO of Scheme) — may get a “no match

found” exception at run-time. Very flexible.

But we can develop type systems that restrict the language and
prevent getting stuck without developing a class system.

Can base types on “derived from the same object,” which can form
the basis for multimethods.

e See Cecil (Chambers et al)

Summary: Pure classless OOP a liberating way to think, especially if
you learn workarounds in more restrictive languages.

- /

Dan Grossman CSE505 Fall 2009, Lecture 18

18

