
'

&

$

%

CSE 505:
Concepts of Programming Languages

Dan Grossman

Fall 2009

Lecture 12— More Subtyping; Parametric Polymorphism

Dan Grossman CSE505 Fall 2009, Lecture 12 1

'

&

$

%

A Matter of Opinion?

If subsumption makes well-typed terms get stuck, it is wrong.

We might allow less subsumption (for efficiency), but we shall not

allow more than is sound.

But we have been discussing “subset semantics” in which e : τ and

τ ≤ τ ′ means e is a τ ′.

• (There are “fewer” values of type τ than of type τ ′, but not

really.)

It is very tempting to go beyond this, but you must be very careful. . .

But first we need to emphasize a really nice property we had: Types

never affected run-time behavior.

Dan Grossman CSE505 Fall 2009, Lecture 12 2

'

&

$

%

Erasure

I.e., A program type-checks or does not. If it does, it evaluates just

like in the untyped λ-calculus.

More formally, we have:

• Our language with types (e.g., λx : τ . e, Aτ1+τ2(e), etc.) and a

semantics

• Our language without types (e.g., λx. e, A(e), etc.) and a

different (but very similar) semantics

• An erasure metafunction from first language to second

• An equivalence theorem: Erasure commutes with evaluation.

This useful (for reasoning and efficiency) fact will be less obvious (but

true) with parametric polymorphism.

Dan Grossman CSE505 Fall 2009, Lecture 12 3

'

&

$

%

Coercion Semantics

Wouldn’t it be great if. . .

• int ≤ float

• int ≤ {l1:int}

• τ ≤ string

• we could “overload the cast operator”

For these proposed τ ≤ τ ′ relationships, we need a run-time action to

turn a τ into a τ ′. Called a coercion.

Programmers could use float_of_int and similar but they whine

about it.

Dan Grossman CSE505 Fall 2009, Lecture 12 4

'

&

$

%

Implementing Coercions

If coercion C (e.g., float_of_int) “witnesses” τ ≤ τ ′ (e.g.,

int ≤ float), then we insert C when using τ ≤ τ ′ with subsumption.

So our translation to the untyped semantics depends on where we use

subsumption. So it is really from typing derivations to programs.

And typing derivations aren’t unique (uh-oh).

Example 1: Suppose int ≤ float and τ ≤ string. Consider

· ` print string(34) : unit.

Example 2: Suppose int ≤ {l1:int}. Consider 34 == 34.

(Where == is bit-equality on ints or pointers.)

Dan Grossman CSE505 Fall 2009, Lecture 12 5

'

&

$

%

Coherence

Coercions need to be coherent, meaning they don’t have these

problems. (More formally, programs are deterministic even though

type checking is not—any typing derivation for e translates to an

equivalent program.)

You can also make (complicated) rules about where subsumption

occurs and which subtyping rules take precedence.

It’s a mess. . .

Dan Grossman CSE505 Fall 2009, Lecture 12 6

'

&

$

%

C++

Semi-Example: Multiple inheritance a la C++.

class C2 {};

class C3 {};

class C1 : public C2, public C3 {};

class D {

public: int f(class C2) { return 0; }

int f(class C3) { return 1; }

};

int main() { return D().f(C1()); }

Note: A compile-time error “ambiguous call”

Note: Same in Java with interfaces (“reference is ambiguous”)

Dan Grossman CSE505 Fall 2009, Lecture 12 7

'

&

$

%

Where are we

• “Subset” subtyping allows “upcasts”

• “Coercive subtyping” allows casts with run-time effect

• What about “downcasts”?

That is, should we have something like:

if_hastype(τ ,e1) then x.e2 else e3

(Roughly, if at run-time e1 has type τ (or a subtype), then bind it

to x and evaluate e2. Else evaluate e3. Avoids having

exceptions.)

Dan Grossman CSE505 Fall 2009, Lecture 12 8

'

&

$

%

Downcasts

I can’t deny downcasts exist, but here are some bad things about them:

• Types don’t erase – you need to represent τ and e1’s type at

run-time. (Hidden data fields.)

• Breaks abstractions: Before, passing {l1 = 3, l2 = 4} to a

function taking {l1 : int} hid the l2 field.

• Use ML-style datatypes – now programmer decides which data

should have tags.

• Use parametric polymorphism – the right way to do container

types (not downcasting results)

Now onto universally quantified types...

Dan Grossman CSE505 Fall 2009, Lecture 12 9

'

&

$

%

The Goal

Understand what this interface means and why it matters:

type ’a mylist;

val mt_list : ’a mylist

val cons : ’a -> ’a mylist -> ’a mylist

val decons : ’a mylist -> ((’a * ’a mylist) option)

val length : ’a mylist -> int

val map : (’a -> ’b) -> ’a mylist -> ’b mylist

From two perspectives:

1. Library: Implement code to this partial specification

2. Client: Use code written to this partial specification

Dan Grossman CSE505 Fall 2009, Lecture 12 10

'

&

$

%

What The Client Likes
1. Library is reusable. Can make:

• Different lists with elements of different types

• New reusable functions outside of library. Example:

val twocons : ’a -> ’a -> ’a mylist -> ’a mylist

2. Easier, faster, more reliable than subtyping (cf. Java 1.4 Vector)

• No downcast to write, run, maybe-fail

3. Library must “behave the same” for all “type instantiations”!!

• ’a and ’b held abstract from library functions

• E.g., with built-in lists: If foo has type ’a list -> int, foo

[1;2;3] and foo [(5,4);(7,2);(9,2)] are totally

equivalent! (Never true with downcasts)

• In theory, means less (re)-integration testing

• Proof is beyond this course, but not much

Dan Grossman CSE505 Fall 2009, Lecture 12 11

'

&

$

%

What the Library Likes

1. Reusability — For same reasons client likes it

2. Abstraction of mylist from clients

• Clients must “behave the same” for all equivalent

implementations, even if “hidden definition” of ’a mylist

changes

• Clients typechecked knowing only there exists a type

constructor mylist

• Unlike Java, C++, R5RS Scheme, no way to downcast a t

mylist to, e.g., a pair

Dan Grossman CSE505 Fall 2009, Lecture 12 12

'

&

$

%

Start simpler

Our interface has a lot going on:

1. Element types held abstract from library

2. List type (constructor) held abstract from client

3. Reuse of type variables “makes connections” among expressions of

abstract types

4. Lists need some form of recursive type

• STλC has no unbounded data structures (except functions)

Today just consider (1) and (3)

• First using a formal language with explicit type abstraction

• Then highlight differences with ML

Note: Much more interesting than “not getting stuck”

Dan Grossman CSE505 Fall 2009, Lecture 12 13

'

&

$

%

Syntax

e ::= c | x | λx:τ . e | e e | Λα. e | e[τ]

τ ::= int | τ → τ | α | ∀α.τ

v ::= c | λx:τ . e | Λα. e

Γ ::= · | Γ, x:τ

∆ ::= · | ∆, α

New:

• Type variables

• Types, terms, and contexts to know “what type variables are in

scope” (much like we did for term variables)

• Type-applications to instantiate polymorphic expressions

Dan Grossman CSE505 Fall 2009, Lecture 12 14

'

&

$

%

Informally speaking

1. Λα. e: A value that when used runs e (with some type τ for α)

• To type-check e, know α is one type, but not which type

2. e[τ]: Evaluate e to some Λα. e′ and then run e′

• The choice of τ is irrelevant at run-time

• τ used for type-checking and proof of Preservation

3. Types can use type variables α, β, etc., but only if they’re in

scope (just like term variables)

• Type-checking will be ∆; Γ ` e : τ to know what type

variables are in scope in e

• In a type with ∀α.τ , can also use α in τ

Dan Grossman CSE505 Fall 2009, Lecture 12 15

'

&

$

%

Semantics

Our evaluation judgment (e.g., small-step left-right e → e′) still looks

the same. Just two new rules (note Λα. e a value):

Old:
e1 → e′

1

e1 e2 → e′
1 e2

e2 → e′
2

v e2 → v e′
2 (λx:τ . e) v → e[v/x]

New:
e → e′

e[τ] → e′[τ] (Λα. e)[τ] → e[τ/α]

Plus now have 3 different kinds of substitution, all defined in

straightforward capture-avoiding way:

• e1[e2/x] (old)

• e[τ ′/α] (new)

• τ [τ ′/α] (new)

Dan Grossman CSE505 Fall 2009, Lecture 12 16

'

&

$

%

Example

Example (using addition):

(Λα. Λβ. λx : α. λf :α → β. f x) [int] [int] 3 (λy : int. y + y)

Dan Grossman CSE505 Fall 2009, Lecture 12 17

'

&

$

%

Typing, part 1

Mostly we just get picky about “no free type variables”:

• Typing judgment has the form ∆; Γ ` e : τ

(whole program ·; · ` e : τ)

– Next slide

• Uses helper judgment ∆ ` τ

– “all free type variables in τ are in ∆”

∆ ` τ

α ∈ ∆

∆ ` α ∆ ` int

∆ ` τ1 ∆ ` τ2

∆ ` τ1 → τ2

∆, α ` τ

∆ ` ∀α.τ

Rules are boring, but trust me, allowing free type variables is a

pernicious source of language/compiler bugs

Dan Grossman CSE505 Fall 2009, Lecture 12 18

'

&

$

%

Typing, part 2

Old (with one technical change to prevent free type variables):

∆; Γ ` x : Γ(x) ∆; Γ ` c : int

∆; Γ, x:τ1 ` e : τ2 ∆ ` τ1

∆; Γ ` λx:τ1. e : τ1 → τ2

∆; Γ `e1 : τ2 →τ1 ∆; Γ ` e2 : τ2

∆; Γ ` e1 e2 : τ1

New:

∆, α; Γ ` e : τ1

∆; Γ ` Λα. e : ∀α.τ1

∆; Γ ` e : ∀α.τ1 ∆ ` τ2

∆; Γ ` e[τ2] : τ1[τ2/α]

Dan Grossman CSE505 Fall 2009, Lecture 12 19

'

&

$

%

Example

Example (using addition):

(Λα. Λβ. λx : α. λf :α → β. f x) [int] [int] 3 (λy : int. y + y)

Dan Grossman CSE505 Fall 2009, Lecture 12 20

'

&

$

%

The Whole Language (called System F)
e ::= c | x | λx:τ . e | e e | Λα. e | e[τ]
τ ::= int | τ → τ | α | ∀α.τ
v ::= c | λx:τ . e | Λα. e
Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

e → e′

e e2 → e′ e2

e → e′

v e → v e′

e → e′

e[τ] → e′[τ]

(λx:τ . e) v → e[v/x] (Λα. e)[τ] → e[τ/α]

∆; Γ ` x : Γ(x) ∆; Γ ` c : int

∆;Γ, x:τ1 ` e : τ2 ∆ ` τ1

∆;Γ ` λx:τ1. e : τ1 → τ2

∆, α; Γ ` e : τ1

∆;Γ ` Λα. e : ∀α.τ1

∆;Γ `e1 : τ2 →τ1 ∆;Γ ` e2 : τ2

∆;Γ ` e1 e2 : τ1

∆;Γ `e : ∀α.τ1 ∆`τ2

∆;Γ ` e[τ2] : τ1[τ2/α]

Dan Grossman CSE505 Fall 2009, Lecture 12 21

'

&

$

%

Examples

An overly simple polymorphic function...

Let id = Λα. λx : α. x

• id has type ∀α.α → α

• id [int] has type int → int

• id [int ∗ int] has type (int ∗ int) → (int ∗ int)

• (id [∀α.α → α]) id has type ∀α.α → α

In ML you can’t do the last one; in System F you can.

Dan Grossman CSE505 Fall 2009, Lecture 12 22

'

&

$

%

More Examples

Let applyOld = Λα. Λβ. λx : α. λf : α → β. f x

• applyOld has type ∀α.∀β.α → (α → β) → β

• ·; x:int → int ` (applyOld [int][int] 3 x) : int

Let applyNew = Λα. λx : α. Λβ. λf : α → β. f x

• applyNew has type ∀α.α → (∀β.(α → β) → β)
(impossible in ML)

• ·; x:int → string, y:int → int `
(let z = applyNew [int] in z (z 3 [int] y) [string] x) : string

Let twice = Λα. λx : α. λf : α → α. f (f x).

• twice has type ∀α.α → (α → α) → α

• Cannot be made more polymorphic

Dan Grossman CSE505 Fall 2009, Lecture 12 23

