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CSE 505:
Concepts of Programming Languages

Dan Grossman

Fall 2009

Lecture 10— Curry-Howard Isomorphism; Evaluation Contexts
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Outline

A couple left-over topics from last lecture:

• Sums in “real” programming languages

• A fuller explanation of why it’s called fix

Two totally different topics:

• Curry-Howard Isomorphism

– Types are propositions

– Programs are proofs

• Evaluation contexts, explicit stacks, and first-class continuations
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Recall sums
e ::= . . . | A(e) | B(e) | match e with Ax. e | Bx. e

v ::= . . . | A(v) | B(v)

τ ::= . . . | τ1 + τ2

match A(v) with Ax. e1 | By. e2 → e1[v/x]

match B(v) with Ax. e1 | By. e2 → e2[v/y]

e → e′

A(e) → A(e′)

e → e′

B(e) → B(e′)

e → e′

match e with Ax. e1 | By. e2 → match e′ with Ax. e1 | By. e2

Γ ` e : τ1

Γ ` A(e) : τ1 + τ2

Γ ` e : τ2

Γ ` B(e) : τ1 + τ2

Γ ` e : τ1 + τ2 Γ, x:τ1 ` e1 : τ Γ, y:τ2 ` e2 : τ

Γ ` match e with Ax. e1 | By. e2 : τ
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What are sums for?

• Pairs, structs, records, aggregates are fundamental data-builders

• Sums are just as fundamental: “this or that not both”

• You have seen how Caml does sums (datatypes)

• Worth showing how C and Java do the same thing

– A primitive in one language is an idiom in another
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Sums in C

type t = A of t1 | B of t2 | C of t3

match e with A x -> ...

One way in C:

struct t {

enum {A, B, C} tag;

union {t1 a; t2 b; t3 c;} data;

};

... switch(e->tag){ case A: t1 x=e->data.a; ...

• No static checking that tag is obeyed

• As fat as the fattest variant (avoidable with casts)

– Mutation costs us again!

• Shameless plug: Cyclone has ML-style datatypes
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Sums in Java

type t = A of t1 | B of t2 | C of t3

match e with A x -> ...

One way in Java (t4 is the match-expression’s type):

abstract class t {abstract t4 m();}

class A extends t { t1 x; t4 m(){...}}

class B extends t { t2 x; t4 m(){...}}

class C extends t { t3 x; t4 m(){...}}

... e.m() ...

• A new method for each match expression

• Supports extensibility via new variants (subclasses) instead of

extensibility via new operations (match expressions)
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Recall Fix
Note: Like let rec but using a λ to bind the name

e ::= . . . | fix e

e → e′

fix e → fix e′ fix λx. e → e[fix λx. e/x]

Γ ` e : τ → τ

Γ ` fix e : τ

Factorial example:

fix λf. λn. if n < 1 then 1 else n ∗ (f(n − 1))

• Operationally, substitution unrolls the recursion one level

• For type system, λf. λn. if n < 1 then 1 else n ∗ (f(n − 1))
has type (int → int) → (int → int).
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Why called fix?

My slide in the last lecture could have explained fix-points much

better...

In math, the fix-point of a function g is an x such that g(x) = x.

• This makes sense only if g has type τ → τ for some τ .

• A particular g could have have 0, 1, 39, or infinity fix-points

• Examples for functions of type int → int:

– λx. x + 1 has no fix-points

– λx. x ∗ 0 has one fix-point

– λx. absolute value(x) has an infinite number of fix-points

– λx. if x < 10 && x > 0 then x else 0 has 10 fix-points
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Higher types

At higher types like (int → int) → (int → int), the notion of

fix-point is exactly the same (but harder to think about)

• For what inputs f of type int → int is g(f) = f .

Examples:

• λf. λx. (f x) + 1 has no fix-points

• λf. λx. (f x) ∗ 0 (or just λf. λx. 0) has 1 fix-point

– The function that always returns 0

– In math, there is exactly one such function (cf. equivalence)

• λf. λx. absolute value(f x) has an infinite number of fix-points:

Any function that never returns a negative result
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Back to factorial

Now, what are the fix-points of

λf. λx. if x < 1 then 1 else x ∗ (f(x − 1))?

It turns out there is exactly one (in math): the factorial function!

And fix λf. λx. if x < 1 then 1 else x ∗ (f(x − 1)) behaves just

like the factorial function, i.e., it behaves just like the fix-point of

λf. λx. if x < 1 then 1 else x ∗ (f(x − 1)).

(This isn’t really important, but I like explaining terminology and

showing that programming is deeply connected to mathematics.)
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Curry-Howard Isomorphism

What we did:

• Define a programming language

• Define a type system to rule out programs we don’t want

What logicians do:

• Define a logic (a way to state propositions)

– Example: Propositional logic p ::= b | p ∧ p | p ∨ p | p → p

• Define a proof system (a way to prove propositions)

But it turns out we did that too!

Slogans:

• “Propositions are Types”

• “Proofs are Programs”
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A slight variant

Let’s take the explicitly typed STλC with base types b1, b2, . . .,

no constants, pairs, and sums

e ::= x | λx. e | e e

| (e, e) | e.1 | e.2

| A(e) | B(e) | match e with Ax. e | Bx. e

τ ::= b | τ → τ | τ ∗ τ | τ + τ

Even without constants, plenty of terms type-check with Γ = · ...
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Example programs

λx:b17. x

has type

b17 → b17
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Example programs

λx:b1. λf :b1 → b2. f x

has type

b1 → (b1 → b2) → b2
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Example programs

λx:b1 → b2 → b3. λy:b2. λz:b1. x z y

has type

(b1 → b2 → b3) → b2 → b1 → b3
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Example programs

λx:b1. (A(x), A(x))

has type

b1 → ((b1 + b7) ∗ (b1 + b4))
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Example programs

λf :b1 → b3. λg:b2 → b3. λz:b1 + b2.

(match z with Ax. f x | Bx. g x)

has type

(b1 → b3) → (b2 → b3) → (b1 + b2) → b3
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Example programs

λx:b1 ∗ b2. λy:b3. ((y, x.1), x.2)

has type

(b1 ∗ b2) → b3 → ((b3 ∗ b1) ∗ b2)
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Empty and Nonempty Types

So we have seen several “nonempty” types (closed terms of that type):

b17 → b17

b1 → (b1 → b2) → b2

(b1 → b2 → b3) → b2 → b1 → b3

b1 → ((b1 + b7) ∗ (b1 + b4))

(b1 → b3) → (b2 → b3) → (b1 + b2) → b3

(b1 ∗ b2) → b3 → ((b3 ∗ b1) ∗ b2)

But there are also lots of “empty” types (no closed term of that type):

b1 b1 → b2 b1 + (b1 → b2) b1 → (b2 → b1) → b2

And “I” have a “secret” way of knowing whether a type will be empty;

let me show you propositional logic...
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Propositional Logic
With → for implies, + for inclusive-or and ∗ for and:

p ::= b | p → p | p ∗ p | p + p

Γ ::= · | Γ, p

Γ ` p

Γ ` p1 Γ ` p2

Γ ` p1 ∗ p2

Γ ` p1 ∗ p2

Γ ` p1

Γ ` p1 ∗ p2

Γ ` p2

Γ ` p1

Γ ` p1 + p2

Γ ` p2

Γ ` p1 + p2

Γ ` p1 + p2 Γ, p1 ` p3 Γ, p2 ` p3

Γ ` p3

p ∈ Γ

Γ ` p

Γ, p1 ` p2

Γ ` p1 → p2

Γ ` p1 → p2 Γ ` p1

Γ ` p2
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Guess what!!!!
That’s exactly our type system, erasing terms and changing every τ to a p

Γ ` e : τ

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 ∗ τ2

Γ ` e : τ1 ∗ τ2

Γ ` e.1 : τ1

Γ ` e : τ1 ∗ τ2

Γ ` e.2 : τ2

Γ ` e : τ1

Γ ` A(e) : τ1 + τ2

Γ ` e : τ2

Γ ` B(e) : τ1 + τ2

Γ ` e : τ1 + τ2 Γ, x:τ1 ` e1 : τ Γ, y:τ2 ` e2 : τ

Γ ` match e with Ax. e1 | By. e2 : τ

Γ(x) = τ

Γ ` x : τ

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

Dan Grossman CSE505 Fall 2009, Lecture 10 21



'

&

$

%

Curry-Howard Isomorphism

• Given a closed term that type-checks, we can take the typing

derivation, erase the terms, and have a propositional-logic proof.

• Given a propositional-logic proof, there exists a closed term with

that type.

• A term that type-checks is a proof — it tells you exactly how to

derive the logic formula corresponding to its type.

• Intuitionistic (hold that thought) propositional logic and

simply-typed lambda-calculus with pairs and sums are the same

thing.

– Computation and logic are deeply connected

– λ is no more or less made up than implication

• Let’s revisit our examples under the logical interpretation...
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Example proofs

λx:b17. x

is a proof that

b17 → b17
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Example proofs

λx:b1. λf :b1 → b2. f x

is a proof that

b1 → (b1 → b2) → b2
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Example proofs

λx:b1 → b2 → b3. λy:b2. λz:b1. x z y

is a proof that

(b1 → b2 → b3) → b2 → b1 → b3

Dan Grossman CSE505 Fall 2009, Lecture 10 25



'

&

$

%

Example proofs

λx:b1. (A(x), A(x))

is a proof that

b1 → ((b1 + b7) ∗ (b1 + b4))
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Example proofs

λf :b1 → b3. λg:b2 → b3. λz:b1 + b2.

(match z with Ax. f x | Bx. g x)

is a proof that

(b1 → b3) → (b2 → b3) → (b1 + b2) → b3
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Example proofs

λx:b1 ∗ b2. λy:b3. ((y, x.1), x.2)

is a proof that

(b1 ∗ b2) → b3 → ((b3 ∗ b1) ∗ b2)
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Why care?

Because:

• This is just fascinating (glad I’m not a dog).

• For decades these were separate fields.

• Thinking “the other way” can help you know what’s

possible/impossible

• Can form the basis for automated theorem provers

• Type systems should not be ad hoc piles of rules!

So, every typed λ-calculus is a proof system for some logic...

Is STλC with pairs and sums a complete proof system for

propositional logic? Almost...
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Classical vs. Constructive

Classical propositional logic has the “law of the excluded middle”:

Γ ` p1 + (p1 → p2)

(Think “p or not p” – also equivalent to double-negation.)

STλC has no proof for this; there is no closed expression with this

type.

Logics without this rule are called constructive. They’re useful because

proofs “know how the world is” and “are executable” and “produce

examples”.

You can still “branch on possibilities”:

((p1 + (p1 → p2)) ∗ (p1 → p3) ∗ ((p1 → p2) → p3)) → p3
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Example classical proof

Theorem: I can always wake up at 9AM and get to campus by 10AM.

Proof: If it is a weekday, I can take a bus that leaves at 9:30AM. If it

is not a weekday, traffic is light and I can drive. Since it is a weekday

or not a weekday, I can get to campus by 10AM.

Problem: If you wake up and don’t know if it’s a weekday, this proof

does not let you construct a plan to get to campus by 10AM.

In constructive logic, that never happens. You can always extract a

program from a proof that “does” what you proved “could be”.

You could not prove the theorem above, but you could prove, “If I

know whether it is a weekday or not, then I can get to campus by

10AM.”
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Fix

A “non-terminating proof” is no proof at all.

Remember the typing rule for fix:

Γ ` e : τ → τ

Γ ` fix e : τ

That let’s us prove anything! For example: fix λx:b3. x has type b3.

So the “logic” is inconsistent (and therefore worthless)

Related: In ML, a value of type ’a never terminates normally (raises

an exception, infinite loop, etc.)

let rec f x = f x

let z = f 0
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Last word on Curry-Howard

It’s not just STλC and intuitionistic propositional logic.

Every logic has a correspondng typed λ calculus (and no consistent

logic has something like fix).

• Example: When we add universal types (“generics”) in a few

lectures, that corresponds to adding universal quantification.

If you remember one thing: the typing rule for function application is

modus ponens.
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Toward Evaluation Contexts
(untyped) λ-calculus with extensions has lots of “boring inductive rules”:

e1 → e′
1

e1 e2 → e′
1 e2

e2 → e′
2

v e2 → v e′
2

e → e′

e.1 → e′.1

e → e′

e.2 → e′.2

e1 → e′
1

(e1, e2) → (e′
1, e2)

e2 → e′
2

(v1, e2) → (v1, e′
2)

e → e′

A(e) → A(e′)

e → e′

B(e) → B(e′)

e → e′

match e with Ax. e1 | By. e2 → match e′ with Ax. e1 | By. e2

and some “interesting do-work rules”:

(λx. e) v → e[v/x] (v1, v2).1 → v1 (v1, v2).2 → v2

match A(v) with Ax. e1 | By. e2 → e1[v/x]

match B(v) with Ay. e1 | Bx. e2 → e2[v/x]
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Evaluation Contexts
We can define evaluation contexts, which are expressions with one hole

where “interesting work” may occur:

E ::= [·] | E e | v E | (E, e) | (v, E) | E.1 | E.2

| A(E) | B(E) | (match E with Ax. e1 | By. e2)
Define “filling the hole” E[e] in the obvious way (stapling).

Semantics now uses two judgments e → e′ and e
p→ e′, but the

former has only 1 rule and the latter has just the “interesting work”:

e
p→ e′

E[e] → E[e′]

(λx. e) v
p→ e[v/x] (v1, v2).1

p→ v1 (v1, v2).2
p→ v2

match A(v) with Ax. e1 | By. e2
p→ e1[v/x]

match B(v) with Ay. e1 | Bx. e2
p→ e2[v/x]
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So what?

So far, all we have done is rearrange our semantics to be more concise

• Each boring rule become a form of E

Evaluation relies on decomposition (unstapling the right subtree):

Given e, find an E, ea, e′
a such that e = E[ea] and ea

p→ e′
a.

Theorem (Unique Decomposition): If · ` e : τ , then e is a value or

there is exactly one decomposition of e.

• Hence evaluation is deterministic

• In fact it’s still CBV left-to-right

But the real power from defining E is that it lets us reify

continuations (evaluation stacks) ...
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Continuations

First-class continuations in one slide:

e ::= . . . | letcc x. e | throw e e | cont E

v ::= . . . | cont E

E ::= . . . | throw E e | throw v E

E[letcc x. e] → E[(λx. e)(cont E)]

E[throw (cont E′) v] → E′[v]

Very powerful and general: For example, non-preemptive

multithreading in the language. Exceptions. “Time travel.”
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Connection to interpreters

A “real” (efficient, natural) interpreter for lambda-calculus (or ML)

would not be like our small-step semantics

• Would re-decompose the whole program for each step!

Instead, maintain the decomposition incrementally

• With a stack to remember “what to work on next”!

Also, don’t use substitution; use environments (see your homework)

• At this point, need just one while-loop, pairs, and malloc

And if your stacks are heap-allocated and immutable, you can

implement continuation operations (letcc and throw) in O(1) time.

• A nice (and provably correct) sequence of more primitive

interpreters

• Can post Caml code for the curious
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