CSE 505:
Concepts of Programming Languages

Dan Grossman
Fall 2009
Lecture 10— Curry-Howard Isomorphism; Evaluation Contexts

- /

Dan Grossman CSE505 Fall 2009, Lecture 10

/Outline

A couple left-over topics from last lecture:
e Sums in “real” programming languages
e A fuller explanation of why it's called fix
Two totally different topics:

e Curry-Howard Isomorphism
— Types are propositions

— Programs are proofs

e Evaluation contexts, explicit stacks, and first-class continuations

-

/

Dan Grossman CSE505 Fall 2009, Lecture 10

~

/Recall sums

e == ...|A(e)|B(e)| match e with Ax. e | Bx. €
v == ...|A(w)|B(v)
T = ...|T1—|—T2

match A(v) with Az. e; | By. e2 — e1[v/x]

match B(v) with Az. e; | By. e2 — ez2[v/y]
e — e e — e

A(e) — A(e,) B(e) — B(e,)

’
e — €

match e with Az. e; | By. ez — match e’ with Az. e; | By. e-

I'e:m I'e: ™
I'-A(e): 11+ 72 I'B(e): 11+ 72
I'Fe:7m 4+ 1 I'x:mm ey T I'yy:me Fe2 : 7
\\ I' - match e with Ax. e; | By. ez : T

/

Dan Grossman CSE505 Fall 2009, Lecture 10

/VVhat are sums for? \

e Pairs, structs, records, aggregates are fundamental data-builders

e Sums are just as fundamental: “this or that not both”
e You have seen how Caml does sums (datatypes)

e Worth showing how C and Java do the same thing

— A primitive in one language is an idiom in another

- /

CSE505 Fall 2009, Lecture 10

Dan Grossman

/Sums in C \

type t = A of t1 | B of t2 | C of t3
match e with A x ->

One way in C:
struct t {
enum {A, B, C} tag;
union {tl1l a; t2 b; t3 c;} data;
+s

switch(e->tag){ case A: tl1 x=e->data.a;

e No static checking that tag is obeyed
e As fat as the fattest variant (avoidable with casts)

— Mutation costs us again!

\\o Shameless plug: Cyclone has ML-style datatypes /

Dan Grossman CSE505 Fall 2009, Lecture 10

/Sums in Java \

type t = A of t1 | B of t2 | C of t3
match e with A x -> ...

One way in Java (t4 is the match-expression's type):

abstract class t {abstract t4 m();}
class A extends t { t1 x; t4 mO{...}}
class B extends t { t2 x; t4 m(QO{...}}
class C extends t { t3 x; t4 m(QO{...}}

. e.m()
e A new method for each match expression

e Supports extensibility via new variants (subclasses) instead of
extensibility via new operations (match expressions)

- /

Dan Grossman CSE505 Fall 2009, Lecture 10

/Recall Fix \

Note: Like let rec but using a A to bind the name

e:=...|fixe

/
e — €

fix e — fix €’ fix Ax. e — e[fix Ax. e/x]

'Fe:7— 1

I'fixe: T

Factorial example:
fix A\f. An. if n < 1 then 1 else n * (f(n — 1))

e Operationally, substitution unrolls the recursion one level

e For type system, Af. An. if n < 1 then 1 else n * (f(n — 1))

\\ has type (int — int) — (int — int). /

Dan Grossman CSE505 Fall 2009, Lecture 10

/VVhy called fix?

My slide in the last lecture could have explained fix-points much
better...

In math, the fix-point of a function g is an « such that g(x) = «.
e This makes sense only if g has type 7 — 7 for some 7.
e A particular g could have have 0, 1, 39, or infinity fix-points

e Examples for functions of type int — int:
— Ax. x + 1 has no fix-points
— Ax. x * 0 has one fix-point
— Ax. absolute_value(x) has an infinite number of fix-points

— Ax. if £ < 10 && x > 0 then x else 0 has 10 fix-points

-

Dan Grossman CSE505 Fall 2009, Lecture 10

/Higher types

~

At higher types like (int — int) — (int — int), the notion of
fix-point is exactly the same (but harder to think about)

e For what inputs f of type int — int is g(f) = f.
Examples:

e Af. Axz. (f) 4+ 1 has no fix-points

e A\f. Ax. (f) =0 (or just Af. Az. 0) has 1 fix-point

— The function that always returns 0

— In math, there is exactly one such function (cf. equivalence)

Any function that never returns a negative result

-

e Af. Ax. absolute value(f x) has an infinite number of fix-points:

/

Dan Grossman CSE505 Fall 2009, Lecture 10

/Back to factorial \

Now, what are the fix-points of
Af. Ax. if x < 1thenlelse x x (f(x —1))7?

It turns out there is exactly one (in math): the factorial function!

And fix Af. Ax. if x < 1 then 1 else = * (f(x — 1)) behaves just
like the factorial function, i.e., it behaves just like the fix-point of
Af. dx. if £ < 1thenlelse x x (f(x —1)).

(This isn't really important, but | like explaining terminology and

\ihowing that programming is deeply connected to mathematics.) /

Dan Grossman CSE505 Fall 2009, Lecture 10

10

What we did:
e Define a programming language
e Define a type system to rule out programs we don't want
What logicians do:
e Define a logic (a way to state propositions)
— Example: Propositional logicp ::=b |pAp|pVDp|p—p
e Define a proof system (a way to prove propositions)
But it turns out we did that too!
Slogans:

e “Propositions are Types”

\\o “Proofs are Programs” /

Dan Grossman CSE505 Fall 2009, Lecture 10

/Curry—Howard Isomorphism \

11

/A slight variant \

Let's take the explicitly typed STAC with base types b1, ba, .. .,
no constants, pairs, and sums

e = x|Ax.e|ee
| (e,e) | el]| e.2
| A(e) | B(e) | match e with Az. e | Bx. e

T u= b|lTtHoT|T*xT|T+T

Even without constants, plenty of terms type-check with I' = - ...

- /

Dan Grossman CSE505 Fall 2009, Lecture 10

/Exa mple programs

Ax:bi7. @

has type

bi7 — b7

-

Dan Grossman CSE505 Fall 2009, Lecture 10

13

/Exa mple programs

Awtbl.)\f:bl — bz. f xr

has type

b1 — (bl —>bz) — ba

-

Dan Grossman CSE505 Fall 2009, Lecture 10

14

/Exa mple programs

Ax:by — by — bz. A\y:bs. Az:b1.x 2z y

has type

(b1—>b2—>b3)—>b2—>b1—>b3

-

Dan Grossman CSE505 Fall 2009, Lecture 10

15

/Exa mple programs

-

Axz:by. (A(x),A(x))

has type

by — ((b1 + br) * (b1 + ba))

Dan Grossman

CSE505 Fall 2009, Lecture 10

16

/Example programs \

-

)\f:bl — b3.)\g:bz — b3.)\thl + bz.
(match z with Az. f = | Bx. g x)

has type

(br — b3) — (b2 — b3) — (b1 +b2) — b3

Dan Grossman

CSE505 Fall 2009, Lecture 10 17

/Exa mple programs

Ax:by * ba. Ay:bs. ((y,x.1),x.2)

has type

(bl %k bz) — b3 — ((b3 * bl) % bz)

-

Dan Grossman CSE505 Fall 2009, Lecture 10

18

/Empty and Nonempty Types \

So we have seen several “nonempty” types (closed terms of that type):
bi7 — bir

by — (b1 — b2) — b2

(by — by — b3z) — ba — by — bs

by — ((byr + b7) * (by + by))

(by — b3) — (b2 — b3) — (b1 + b2) — b3

(b1 * bg) — bg — ((bs * by) * bs)

But there are also lots of “empty” types (no closed term of that type):
b1 b1 — b2 b1 + (b1 — b2) by — (b2 — b1) — b2

And “I" have a “secret” way of knowing whether a type will be empty;

\Et me show you propositional logic... /

Dan Grossman CSE505 Fall 2009, Lecture 10

19

/Propositional Logic

\\ I'p

With — for implies, + for inclusive-or and * for and:
p == b|lp—p|pxp|p+p
r «= .|IL,p
I'-p
I' - p1 I' - p2 I' - p1 * p2 I' - p1 % p2
' - p1 * p2 I' - p1 I' - p2
F|—p1 Fl—pz F|_p1—|—p2 F,p1|_p3 F,p2|—p3
I'Ep1+p2 T'Fpir+ p2 I' - ps
pel I',p1 F po I' - p1 — p2 I' - py
' - p1 — p2 I' - p2

/

Dan Grossman CSE505 Fall 2009, Lecture 10

20

/Guess what!!!] \

That's exactly our type system, erasing terms and changing every 7 to a p

I'e:T
I'Fe1:m™m T'Fex:Ts I'e:T™ %10 'e:m %10
'+ (e1,€e2) : 71 % T2 '+el:m I'+e.2: 7
I'Fe:m I'Fe: ™
' A(e): T+ 72 I'-B(e): 11+ 72

'Fe:mm4+m= IieemmFei:7™ yyimeFe2: 7

I' - match e with Axz. e; | By. ez : T

I'z) =1 I'z:m1Fe: T I'Fei:m — 711 T'kFez:m

'Fxz:7 TkHXe.e: 11 — T2 I'Feiex:m

- /

Dan Grossman CSE505 Fall 2009, Lecture 10

/Curry—Howard Isomorphism \

e Given a closed term that type-checks, we can take the typing
derivation, erase the terms, and have a propositional-logic proof.

e Given a propositional-logic proof, there exists a closed term with
that type.

e A term that type-checks is a proof — it tells you exactly how to
derive the logic formula corresponding to its type.

e Intuitionistic (hold that thought) propositional logic and
simply-typed lambda-calculus with pairs and sums are the same
thing.

— Computation and logic are deeply connected

— A Is no more or less made up than implication

\\o Let’s revisit our examples under the logical interpretation... /

Dan Grossman CSE505 Fall 2009, Lecture 10

22

/Example proofs

-

Ax:bi7. @

Is a proof that

bi7 — b7

Dan Grossman

CSE505 Fall 2009, Lecture 10

23

/Example proofs

-

Ax:bi. Af:by — bsy. f x

Is a proof that

bl — (bl —>b2) —>b2

Dan Grossman

CSE505 Fall 2009, Lecture 10

24

/Example proofs

Ax:by — by — bz. A\y:bs. Az:b1.x 2z y

Is a proof that

(b1—>b2—>b3)—>b2—>b1—>b3

-

Dan Grossman CSE505 Fall 2009, Lecture 10

25

/Example proofs

-

Axz:by. (A(x),A(x))

Is a proof that

by — ((b1 + br) * (b1 + ba))

Dan Grossman

CSE505 Fall 2009, Lecture 10

26

/Example proofs \

-

)\f:bl — b3.)\g:bz — b3.)\thl + bz.
(match z with Az. f = | Bx. g x)

Is a proof that

(br — b3) — (b2 — b3) — (b1 +b2) — b3

Dan Grossman

CSE505 Fall 2009, Lecture 10 27

/Example proofs

Ax:by * ba. Ay:bs. ((y,x.1),x.2)

Is a proof that

(bl %k bz) — b3 — ((b3 * bl) % bz)

-

Dan Grossman CSE505 Fall 2009, Lecture 10

28

/VVhy care’

Because:
e This is just fascinating (glad I'm not a dog).
e For decades these were separate fields.

e Thinking “the other way" can help you know what's
possible /impossible

e Can form the basis for automated theorem provers

e Type systems should not be ad hoc piles of rules!

Is STAC with pairs and sums a complete proof system for
propositional logic? Almost...

-

So, every typed A-calculus is a proof system for some logic...

Dan Grossman CSE505 Fall 2009, Lecture 10

29

/Classical vs. Constructive

~

Classical propositional logic has the “law of the excluded middle":

I' - p1 + (p1 — p2)

(Think “p or not p” — also equivalent to double-negation.)

STAC has no proof for this; there is no closed expression with this

type.

proofs “know how the world is” and “are executable” and “produce

examples”.

You can still “branch on possibilities™ :

((p1 4+ (P1 — p2)) * (P1 — p3) * ((P1 — pP2) — P3)) — D3

-

Logics without this rule are called constructive. They're useful because

/

Dan Grossman CSE505 Fall 2009, Lecture 10

30

/Example classical proof \

Theorem: | can always wake up at 9AM and get to campus by 10AM.

Proof: If it is a weekday, | can take a bus that leaves at 9:30AM. If it
is not a weekday, traffic is light and | can drive. Since it is a weekday
or not a weekday, | can get to campus by 10AM.

Problem: If you wake up and don't know if it's a weekday, this proof
does not let you construct a plan to get to campus by 10AM.

In constructive logic, that never happens. You can always extract a
program from a proof that “does” what you proved “could be".

You could not prove the theorem above, but you could prove, “If |

know whether it is a weekday or not, then | can get to campus by
10AM.”

- /

Dan Grossman CSE505 Fall 2009, Lecture 10

31

/Fix \

A “non-terminating proof” is no proof at all.

Remember the typing rule for fix:

'Fe:7— 1

I'fixe:T

That let’s us prove anything! For example: fix Ax:bs. x has type bg.
So the “logic” is inconsistent (and therefore worthless)

Related: In ML, a value of type ’a never terminates normally (raises
an exception, infinite loop, etc.)

let rec £f x = f x
let z =€ 0

- /

Dan Grossman CSE505 Fall 2009, Lecture 10

32

/I_ast word on Curry-Howard \

It's not just STAC and intuitionistic propositional logic.

Every logic has a correspondng typed A calculus (and no consistent
logic has something like fix).

e Example: When we add universal types (“generics”) in a few
lectures, that corresponds to adding universal quantification.

If you remember one thing: the typing rule for function application is

modus ponens.

- /

Dan Grossman CSE505 Fall 2009, Lecture 10

33

ﬂl'oward Evaluation Contexts

~

(untyped) A-calculus with extensions has lots of “boring inductive rules”:

/ / / /
e — e; €2 — e, e — e e — e

/ / / /
e1e2 —e€ej €2 vey —>vey, el—oe.l e2—e.2

/ / / /
e1 — ej €2 — €5 e —> e e — e

/
€ — €

match e with Az. e; | By. e2 — match e’ with Az. e; | By. e-

and some “interesting do-work rules” :

(Ax. e) v — elv/x] (v1,v2).1 — v1 (v1,v2).2 — w2

match A(v) with Az. e; | By. e2 — e1[v/x]

\\ match B(v) with Ay. e1 | Bx. e2 — ez[v/x]

(e1,e2) — (e1,e2) (vi,e2) — (vi,ez) A(e) — A(e) B(e) — B(

/

Dan Grossman CSE505 Fall 2009, Lecture 10

34

/Evaluation Contexts \

We can define evaluation contexts, which are expressions with one hole

where “interesting work” may occur:
E == [||Ee|vE|(E,e)|(v,E)| E.1| E.2

| A(FE) | B(FE) | (match E with Ax. e; | By. e3)
Define “filling the hole” Ele] in the obvious way (stapling).

Semantics now uses two judgments e — e’ and e — €’, but the
former has only 1 rule and the latter has just the “interesting work’ :

| & /
e — €

Ele] — E[e']

(Az. €) v > e[v/x] (v1,v2).1 > vy (v1,02).2 = v

match A(v) with Az. e1 | By. ez — e1[v/x]

\\ match B(v) with Ay. e | Bz. ex — ex[v/x] /

Dan Grossman CSE505 Fall 2009, Lecture 10

35

/So what? \

So far, all we have done is rearrange our semantics to be more concise

e Each boring rule become a form of E

Evaluation relies on decomposition (unstapling the right subtree):
Given e, find an E, e,, €', such that e = E[e,] and e, — €.

Theorem (Unique Decomposition): If -+ = e : 7, then e is a value or

there is exactly one decomposition of e.
e Hence evaluation is deterministic
e In fact it's still CBV left-to-right

But the real power from defining E is that it lets us reify

continuations (evaluation stacks) ...

- /

CSE505 Fall 2009, Lecture 10

Dan Grossman

36

/Continuations

First-class continuations in one slide:

e = ...|letccx.e|throwee|cont E

v = ...|cont FE

E := ...|throw E e | throw v E

Eletcc x. e] — E[(Ax. e)(cont F)]

E[throw (cont E’) v] — E’[v]

Very powerful and general: For example, non-preemptive
multithreading in the language. Exceptions. “Time travel.”

-

Dan Grossman CSE505 Fall 2009, Lecture 10

37

/Connection to Interpreters

A “real” (efficient, natural) interpreter for lambda-calculus (or ML)
would not be like our small-step semantics

e Would re-decompose the whole program for each step!

Instead, maintain the decomposition incrementally
e With a stack to remember “what to work on next"!

Also, don't use substitution; use environments (see your homework)
e At this point, need just one while-loop, pairs, and malloc

And if your stacks are heap-allocated and immutable, you can
implement continuation operations (letcc and throw) in O(1) time.

e A nice (and provably correct) sequence of more primitive
Interpreters

\\o Can post Caml code for the curious

Dan Grossman CSE505 Fall 2009, Lecture 10

38

