CSE 505:
Concepts of Programming Languages

Dan Grossman
Fall 2009
Lecture 1— Course Introduction

-

Dan Grossman CSE505 Fall 2009, Lecture 1

ﬂl’oday

e Administrative stuff

e Course motivation and goals

— A Java example
e Course overview
e Course pitfalls

e Caml tutorial, part 1

— Advice: play with it between now and Tuesday
(e.g., hwl, problem 1)

-

Dan Grossman CSE505 Fall 2009, Lecture 1

/Cou rse facts \

e Dan Grossman, CSE556, djg
e TA: Sam Guarnieri, sammyg

e Office hours:

— Dan: Wednesdays, 1:30-2:30 (and appointment and come by)
— Sam: Mondays, 2:00-3:00 (and appointment and come by)

e Web page for:
— mailing list
— “homework 0"

— homework 1, fairly carefully pipelined with first lectures

* Do not wait to do it all

- /

Dan Grossman CSE505 Fall 2009, Lecture 1

/Cou rsework \

e 5 homeworks

— "“paper/pencil” (IATEX recommended?)
— programming (Caml required)
— where you'll probably learn the most

— do challenge problems if you want but not technically “extra”

e 2 exams

— “my"” reference sheet plus “your” reference sheet

e Textbook: mostly for “middle few weeks of course”
— won't follow it much
— possibly enough copies floating around the department

— a great book

\\ — not on your Kindles /

Dan Grossman CSE505 Fall 2009, Lecture 1

/Kindles

~

-

the class list

e Fine if you have one or not

e An experiment: Let's work together to see how they're most

convenient (how you want stuff posted, etc.)

e This course is taught from lectures and homeworks, not papers

and books, so may not be a good match?

e My default working mode is posting on the web site or emailing

— Let me know if something else is better

Dan Grossman

CSE505 Fall 2009, Lecture 1

/Academic Integrity \

e |f you violate the rules, | will enforce the maximum penalty allowed

— and I'll be personally offended

— far more important than your grade

e Rough guidelines
— can sketch idea together

— cannot look at code solutions
e Ask questions and always describe what you did

e Please do work together and learn from each other...

- /

Dan Grossman CSE505 Fall 2009, Lecture 1

/Graduate—SchooI Success

e Success in 505 (a graduate course) comes from:
— Learning and enjoying the material
— Challenging yourself
— Managing the “big picture” and the details

e Success has nothing to do with:
— Scrounging for grading points

— "Doing better than the person next to you”

e The person next to you is your colleague for the next 5-50 years

-

/

Dan Grossman CSE505 Fall 2009, Lecture 1

/I_ogistical Advice \

e [ake notes:

— Slides (and some proofs) posted, but they are enough to teach
from not to learn from

— Will work through many examples by hand

e Arrive on time:
— Unlike many CS people, | start and end punctually

— Missing the first n minutes is so much more costly than
missing the last m minutes

— | know you can get here on time (cf. exam days)

- /

Dan Grossman CSE505 Fall 2009, Lecture 1

/Programming—language concepts

Focus on semantic concepts:
What do programs mean (do/compute/produce/represent)?
How to define a language precisely?
English is a poor metalanguage
Aspects of meaning:

equivalence, termination, determinism, type, ...

-

Dan Grossman CSE505 Fall 2009, Lecture 1

/Does It matter?

Novices write programs that “work as expected,” so why be
rigorous/precise/pedantic?

e [he world runs on software

Web-servers and nuclear reactors don’'t “seem to work”
e You buy language implementations—what do they do?
e Software is buggy—semantics assigns blame

e Real languages have many features: building them from
well-understood foundations is good engineering

e Never say “nobody would write that” (surprising interactions)

-

Dan Grossman CSE505 Fall 2009, Lecture 1

10

/Is this Really about PL? \

Building a rigorous and precise model is a hallmark of quality research.

The value of a model is in its:
o fidelity
e convenience for establishing (proving) properties
e revealing alternatives and design decisions
e ability to communicate ideas concisely
Why we mostly do it for programming languages:
e Elegant things we all use
e Remarkably complicated (need rigor)

But | deeply believe this “theory” makes you a better CSE researcher

\\o Focus on the model-building, not just the PL features /

Dan Grossman CSE505 Fall 2009, Lecture 1

11

/Java example

class A { int £f() { return O; } }
class B {
int g(A x) {
try { return x.£(0); }
finally { s }
+
}

For all s, is it equivalent for g's body to be “return 0;"7

Motivation: code optimizer, code maintainer, ...

-

Dan Grossman CSE505 Fall 2009, Lecture 1

12

/1;unch—Hne

Not equivalent:
e Extend A
e x could be null
e s could modify global state, diverge, throw, ...
e s could return
A silly example, but:
e PL makes you a good adversary, programmer

e PL gives you the tools to argue equivalence (hard!)

-

Dan Grossman CSE505 Fall 2009, Lecture 1

13

/Cou rse goals

1. Learn intellectual tools for describing program behavior

2. Investigate concepts essential to most languages
e mutation and iteration
e scope and functions
e objects

e threads
3. Write programs to “connect theory with the code”
4. Sketch applicability to “real” languages

5. Provide background for current PL research

-

(less important for most of you)

Dan Grossman CSE505 Fall 2009, Lecture 1

14

/Course nongoals

e Study syntax; learn to specify grammars, parsers

— Transforming 3 +4 or (+ 3 4) or +(3,4) to
“application of plus operator to constants three and four”

— stop me when | get too sloppy

e Learn specific programming languages (but some ML)

-

Dan Grossman CSE505 Fall 2009, Lecture 1

15

/VVhat we will do

e Define really small languages
— Usually Turing complete

— Always unsuitable for real programming
e Study them rigorously via operational models
e Extend them to realistic languages less rigorously

e Digress for cool results (this is fun!?!)

e Do programming assignments in Caml...

-

Dan Grossman CSE505 Fall 2009, Lecture 1

16

/Caml

-

Caml is an awesome, high-level language

We will use a tiny core subset of it that is well-suited for
manipulating recursive data structures (like programs!)

You mostly have to learn it outside of class (start today!)
— But feel free to ask me for advice

— Even after the course

Resources on course webpage

| am not a language zealot, but knowing ML makes you a better

programmer

/

Dan Grossman CSE505 Fall 2009, Lecture 1

17

/Pitfalls

How to hate this course and get the wrong idea:
e Forget that we made simple models to focus on essentials
e Don't quite get inductive definitions and proofs

e Don't try other ways to model/prove the idea
— You'll probably be wrong

— And therefore you'll learn more

-

e Think PL people focus on only obvious facts (need to start there)

/

Dan Grossman CSE505 Fall 2009, Lecture 1

18

/Final Metacomment

Acknowledging others is crucial...
This course will draw heavily on:

e Previous versions of the course (Borning, Chambers)

e Similar courses elsewhere (Felleisen, Flatt, Harper, Morrisett,

Myers, Pierce, Rugina, Walker, ...)
o Texts (Pierce, Wynskel, ...)

This is a course, not my work.

-

Dan Grossman CSE505 Fall 2009, Lecture 1

19

/Caml tutorial

~

e “Let go of Java/C"

e |f you have seen SML, Haskell, Scheme, Lisp, etc. this will feel

more familiar

e Give us some small code snippets so we have a common

experience we can talk about.
e Also see me use the tools.

e A note later on Seminal.

-

Dan Grossman CSE505 Fall 2009, Lecture 1

20

/Seminal

e This is optional, but Ben Lerner and | would be ever-so grateful
for your informed feedback.

e An additional, complementary style of type-error message.
e No other change to compiler (parsing, code-generation, etc.)

e See “Running Caml locally” on the course website.

-

Dan Grossman CSE505 Fall 2009, Lecture 1

21

