CSE 505:
Concepts of Programming Languages

Dan Grossman

Fall 2008
Lecture 9— More STAC Extensions and Related Topics

-

Dan Grossman CSE505 Fall 2008, Lecture 9

/Outline

e Continue extending STAC — data structures, recursion
e Discussion of “anonymous” types
e Consider termination informally

e Next time (a break from types): Curry-Howard Isomorphism,
Evaluation Contexts, Abstract Machines, Continuations

-

Dan Grossman CSE505 Fall 2008, Lecture 9 2

/Review

ex=Ax.e|x|eel|c vi=Ax.e|c
Tu=int| T —> T Fe=.|Tax:T

81—>€,1 62—>€,2

(Ax. e) v — el[v/x] e1 ez — e} ez v ez — v ey

ele’ /x]: capture-avoiding substitution of e’ for free x in e

I'z: T Fe: T

' c:int I'Fxz:T'(x) I'FAx.e: T — T2

F|—€1:7'2—>7'1 F|—€2:T2

I'Hejgex:m

Preservation: If e :7ande — e, then - €’ : T.

\\Progress: If -+ e : 7, then e is a value or 3 €’ such that e — €’.

Dan Grossman CSE505 Fall 2008, Lecture 9 3

/Booleans and Conditionals \

e = ...|true| false | if e; then ez else e3
T == ...| bool v := ... | true | false
/
€1 — €4

. . /
if e1 then e2 else e3 — if e; then e else e3

if true then e, else ez — €2 if false then e- else e3 — e3

I' - ey : bool 'Fes: T I'es: T

I' - if e; then e else es : T

I' - true : bool I' I false : bool

Notes: CBN, new Canonical Forms case, all lemma cases easy

\iﬂ\lso need to extend definition of substitution (will stop writing that)...) /

Dan Grossman CSE505 Fall 2008, Lecture 9 4

/Pairs (CBV, left-right)

e = ...|(e,e)|el]|e2
v 2= ...| (v,v)
T = ...|TxT
/ /
€1 — €4 €2 — €,
(61762) — (6'1, 62) (’01, 82) — ('Ulv 6'2)
e — e e — e
el —e'.1 e.2 — e'.2
(’Ul, ’U2).1 — U1 (’Ul, ’U2).2 — V9

Small-step can be a pain (more concise notation next lecture)

-

Dan Grossman CSE505 Fall 2008, Lecture 9

/Pairs continued

I'eq :my I'Fes:m™

'+ (61,62) ¢ T1 * To

I'Fe:m 1o I'He: T %15

I'He.l:7m I'e.2: 7

Canonical Forms: If - = v : 71 * 75, then v has the form (vy,v2).
Progress: New cases using C.F. are v.1 and v.2.

Preservation: For primitive reductions, inversion gives the result
directly.

-

Dan Grossman CSE505 Fall 2008, Lecture 9 6

/Records

Records seem like pairs with named fields

e = ...|{li=e1;...5l, =€ } | el
T = ool ly s TR}
v 2= .. | {li =v15..05l = v}

Fields do not a-convert.

Names might let us reorder fields, e.g.,
« = {ly = 4215 = true} : {l2 : bool;l; : int}.

Nothing wrong with this, but many languages disallow it. (Why?
Run-time efficiency and/or type inference)

(Caml has only named record types with disjoint fields.)

More on this when we study subtyping

-

Dan Grossman CSE505 Fall 2008, Lecture 9 7

/Sums

What about ML-style datatypes:
type t = A | B of int | C of int*t

1. Tagged variants (i.e., discriminated unions)

2. Recursive types

3. Type constructors (e.g., type ’a mylist = ...)
4. Names the type

Today we'll model just (1) with (anonymous) sum types...

-

Dan Grossman CSE505 Fall 2008, Lecture 9

/Sum syntax and overview

e == ...|A(e) | B(e)| match e with Ax. e | Bx.
v == ...|A(v)|B(v)

T U= ...|T1+ T2
e Only two constructors: A and B
e All values of any sum type built from these constructors
e So A(e) can have any sum type allowed by e's type
e No need to declare sum types in advance

e Like functions, will “guess the type” in our rules

-

Dan Grossman CSE505 Fall 2008, Lecture 9

/Sum semantics \

match A(v) with Ax. e; | By. ex — e [v/x]

match B(v) with Ax. e; | By. e2 — ex[v/y]

e — e e — e

A(e) — A(e) B(e) — B(€')

/
e — €

match e with Azx. e; | By. e; — match e’ with Azx. e; | By. e-

match has binding occurrences, just like pattern-matching.

(Definition of substitution must avoid capture, just like functions.)

N /

Dan Grossman CSE505 Fall 2008, Lecture 9 10

/VVhat IS going on \

Feel free to think about tagged values in your head:

e A tagged value is a pair of a tag (A or B, or 0 or 1 if you prefer)
and the value

e A match checks the tag and binds the variable to the value

This much is just like Caml in lecture 1 and related to homework 2.

Sums in other guises:

e C: use an enum and a union

— More space than ML, but supports in-place mutation

e OOP: use an abstract superclass and subclasses

- /

Dan Grossman CSE505 Fall 2008, Lecture 9 11

/Sum Type-checking

Inference version (not trivial to infer; can require annotations)

I'Fe:m I'Fe:m
I'HA(e): 7 + 7 I'-B(e): 7 + 7
I'Fe:m + 7 'y Fey: T I'yimo Fex: T

I' - match e with Ax. e; | By. e : 7

Key ideas:
e For constructor-uses, “other side can be anything”

e For match, both sides need same type since don't know which
branch will be taken, just like an if.

Can encode booleans with sums. E.g., bool = int + int,

\:'ue = A(0), false = B(0).

Dan Grossman CSE505 Fall 2008, Lecture 9 12

ﬂl’ype Safety \

Canonical Forms: If -+ = v : 74 + 72, then there exists a v such that

either v is A(vy) and - - vy : 7y or v is B(vy) and «+ F vy : 7.

The rest is induction and substitution...

- /

Dan Grossman CSE505 Fall 2008, Lecture 9 13

/Pairs VS. sSuUms \

e You need both in your language

— With only pairs, you clumsily use dummy values, waste space,
and rely on unchecked tagging conventions

— Example: replace int 4 (int — int) with
int x (int x (int — int))
e ‘“logical duals” (as we'll see soon and the typing rules show)
— To make a 71 * 72 you need a 79 and a T».
— To make a 71 + 72 you need a 77 or a Ts.

— Given a Ty * T, you can get a Ty Or a T
(or both; your ‘“choice™).

— Given a 71 + T2, you must be prepared for either a 71 or 75

(the value's “choice™).

- /

Dan Grossman CSE505 Fall 2008, Lecture 9 14

/Base Types, In general

~

What about floats, strings, enums, ...? Could add them all or do
something more general. ..

Parameterize our language/semantics by a collection of base types
(b1, ..., by) and primitives (€1 : T1y.++5Cn & Tn).

Examples: concat : string—string—string
tolnt : float—int
“hello” : string

For each primitive, assume if applied to values of the right types it
produces a value of the right type.

Together the types and assumed steps tell us how to type-check and

evaluate ¢; v1 ...v, where c; is a primitive.

We can prove soundness once and for all given the assumptions.

-

/

Dan Grossman CSE505 Fall 2008, Lecture 9 15

/Recu rsion \

We won't prove it, but every extension so far preserves termination. A
Turing-complete language needs some sort of loop. What we add
won't be encodable in STAC.

E.g., let rec f x = €

Do typed recursive functions need to be bound to variables or can they
be anonymous?

In Caml, you need variables, but it's unnecessary:

e:=...|fixe

e — e

fix e — fix e’ fix Ax. e — e[fix Ax. e/x]

- /

Dan Grossman CSE505 Fall 2008, Lecture 9 16

/Using fix \

It works just like 1let rec, e.g.,

fix A\f. A\n.if n < 1then lelse n* (f(n —1))

\\Note: You can use it for mutual recursion too. /

Dan Grossman CSE505 Fall 2008, Lecture 9 17

/Pseudo—math digression \

Why is it called fix? In math, a fixed-point of a function g is an x

such that g(x) = «.
Let g be Af. An.if n < 1then lelse n* (f(n —1)).

If g is applied to a function that computes factorial for arguments
< m, then g returns a function that computes factorial for arguments
<m+1.

Now g has type (int — int) — (int — int). The fix-point of g is
the function that computes factorial for all natural numbers.

And fix g is equivalent to that function. That is, fix g is the fix-point
of g.

- /

Dan Grossman CSE505 Fall 2008, Lecture 9 18

ﬂl'yping fix \

I'Fe:T7— 71

'fixe: T

Math explanation: If e is a function from 7 to 7, then fix e, the
fixed-point of e, is some T with the fixed-point property. So it's
something with type 7.

Operational explanation: fix Ax. €’ becomes e’[fix Ax. e’ /x|. The
substitution means x and fix Ax. e’ better have the same type. And
the result means €’ and fix Ax. e’ better have the same type.

Note: The 7 in the typing rule is usually insantiated with a function

type e.g., 71 — T2, SO e has type (17 — T2) — (71 — T2).

Note: Proving soundness is straightforward!

N /

Dan Grossman CSE505 Fall 2008, Lecture 9 19

/General approach

~

We added lets, booleans, pairs, records, sums, and fix. Let was
syntactic sugar. Fix made us Turing-complete by “baking in”
self-application. The others added types.

Whenever we add a new form of type T there are:
e Introduction forms (ways to make values of type 7)
e Elimination forms (ways to use values of type 7)

What are these forms for functions? Pairs? Sums?

-

When you add a new type, think “what are the intro and elim forms”?

/

Dan Grossman CSE505 Fall 2008, Lecture 9

20

/Anonymity \

We added many forms of types, all unnamed a.k.a. structural.

Many real PLs have (all or mostly) named types:

e Java, C, C++: all record types (or similar) have names (omitting
them just means compiler makes up a name)

e Caml sum-types have names.
A never-ending debate:
e Structual types allow more code reuse, which is good.
e Named types allow less code reuse, which is good.
e Structural types allow generic type-based code, which is good.

e Named types allow type-based code to distinguish names, which is
good.

\\The theory is often easier and simpler with structural types. /

Dan Grossman CSE505 Fall 2008, Lecture 9 21

ﬂl’ermination \

Surprising fact: If -+ = e : 7 in the STAC with all our additions except

fix, then there exists a v such that e —™ v.
That is, all programs terminate.

So termination is trivially decidable (the constant “yes” function), so
our language is not Turing-complete.

Proof is in the book. It requires cleverness because the size of

expressions does not “go down"” as programs run.

Non-proof: Recursion in A calculus requires some sort of
self-application. Easy fact: For all I', &, and 7, we cannot derive

'x x:T.

- /

Dan Grossman CSE505 Fall 2008, Lecture 9 22

