
'

&

$

%

CSE 505:
Concepts of Programming Languages

Dan Grossman

Fall 2008

Lecture 6— Lambda Calculus

Dan Grossman CSE505 Fall 2008, Lecture 6 1

'

&

$

%

Where we are

• Done: Syntax, semantics, and equivalence

– As long as all you have is loops and global variables

• Now: Didn’t IMP leave some things out?

– Particularly scope, functions, and data structures

– (Not to mention threads, I/O, exceptions, strings, ...)

Time for a new model... (Pierce, chapter 5)

Dan Grossman CSE505 Fall 2008, Lecture 6 2

'

&

$

%

Data + Code

Higher-order functions work well for scope and data structures.

• Scope: not all memory available to all code

let x = 1

let add3 y =

let z = 2 in

x + y + z

let seven = add3 4

• Data: Function closures store data. Example: Association “list”

let empty = (fun k -> raise Empty)

let cons k v lst = (fun k’ -> if k’=k then v else lst k’)

let lookup k lst = lst k

(Later: Objects do both too)

Dan Grossman CSE505 Fall 2008, Lecture 6 3

'

&

$

%

Adding data structures

Extending IMP with data structures isn’t too hard:

e ::= c | x | e + e | e ∗ e | (e, e) | e.1 | e.2

v ::= c | (v, v)

H ::= · | H, x 7→ v

H;e⇓c

...
H;e1⇓v1 H;e2⇓v2

H;(e1, e2)⇓(v1, v2)

H;e⇓(v1, v2)

H;e.1⇓v1

H;e⇓(v1, v2)

H;e.2⇓v2

Note: We allow pairs of values, not just pairs of integers

Note: We now have stuck programs (e.g., c.1) – what would C++

do? Scheme? ML? Java? Perl?

Note: Division also causes stuckness

Dan Grossman CSE505 Fall 2008, Lecture 6 4

'

&

$

%

What about functions

But adding functions (or objects) does not work well:

e ::= . . . | fun x -> s

s ::= . . . | e(e)

H;e⇓c H ; s → H ′ ; s′

...
H;fun x -> s⇓fun x -> s

H;e1⇓fun x -> s H;e2⇓v

H ; e1(e2) → H ; x := v; s

Does this match “the semantics we want” for function calls?

Dan Grossman CSE505 Fall 2008, Lecture 6 5

'

&

$

%

What about functions

But adding functions (or objects) does not work well:

e ::= . . . | fun x -> s

s ::= . . . | e(e)

H;fun x -> s⇓fun x -> s

H;e1⇓fun x -> s H;e2⇓v

H ; e1(e2) → H ; x := v; s

NO: Consider x := 1; (fun x -> y := x)(2); ans := x.

Scope matters; variable name doesn’t. That is:

• Local variables should “be local”

• Choice of local-variable names should have only local ramifications

Dan Grossman CSE505 Fall 2008, Lecture 6 6

'

&

$

%

Another try

H;e1⇓fun x -> s H;e2⇓v y “fresh”

H ; e1(e2) → H ; y := x; x := v; s; x := y

• “fresh” isn’t very IMP-like but okay (think malloc)

• not a good match to how functions are implemented

• yuck

• NO: wrong model for most functional and OO languages

(even wrong for C if s calls another function that accesses x)

Dan Grossman CSE505 Fall 2008, Lecture 6 7

'

&

$

%

The wrong model

H;e1⇓fun x -> s H;e2⇓v y “fresh”

H ; e1(e2) → H ; y := x; x := v; s; x := y

f1 := (fun x -> f2 := (fun z -> ans := x + z));

f1(2);

x := 3;

f2(4)

“Should” set ans to 6:

• f1(2) should assign to f2 a function that adds 2 to its argument

and stores result in ans.

“Actually” sets ans to 7:

• f2(2) assigns to f2 a function that adds the current value of x to

its argument.

Dan Grossman CSE505 Fall 2008, Lecture 6 8

'

&

$

%

Punch line

The way higher-order functions and objects work is not modeled by

mutable global variables. So let’s build a new model that focuses on

this essential concept (can add other IMP features back later).

(Or just borrow a model from Alonzo Church.)

And drop mutation, conditionals, integers (!), and loops (!)

The Lambda Calculus:

e ::= λx. e | x | e e

v ::= λx. e

You apply a function by substituting the argument for the bound

variable.

(There’s an equivalent environment definition not unlike heap-copying;

see future homework.)

Dan Grossman CSE505 Fall 2008, Lecture 6 9

'

&

$

%

Example Substitutions

e ::= λx. e | x | e e

v ::= λx. e

Substitution is the key operation we were missing:

(λx. x)(λy. y) → (λy. y)

(λx. λy. y x)(λz. z) → (λy. y λz. z)

(λx. x x)(λx. x x) → (λx. x x)(λx. x x)

After substitution, the bound variable is gone, so its “name” was

irrelevant. (Good!)

There are irreducible expressions (x e)

Dan Grossman CSE505 Fall 2008, Lecture 6 10

'

&

$

%

A Programming Language

Given substitution (e1[e2/x]), we can give a semantics:

e → e′

(λx. e) v → e[v/x]

e1 → e′
1

e1 e2 → e′
1 e2

e2 → e′
2

v e2 → v e′
2

A small-step, call-by-value (CBV), left-to-right semantics

• Terminates when the “whole program” is some λx. e

But (also) gets stuck when there’s a free variable “at top-level”

(Won’t “cheat” like we did with H(x) in IMP because scope is what

we’re interested in)

This is the “heart” of functional languages like Caml (but “real”

implementations don’t substitute; they do something equivalent)

Dan Grossman CSE505 Fall 2008, Lecture 6 11

'

&

$

%

Where are we

• Motivation for a new model (done)

• CBV lambda calculus using substitution (done)

• Notes on concrete syntax

• Simple Lambda encodings (it’s Turing complete!)

• Other reduction strategies

• Defining substitution

Dan Grossman CSE505 Fall 2008, Lecture 6 12

'

&

$

%

Syntax Revisited

We (and Caml) resolve concrete-syntax ambiguities as follows:

1. λx. e1 e2 is (λx. e1 e2), not (λx. e1) e2

2. e1 e2 e3 is (e1 e2) e3, not e1 (e2 e3)
(Convince yourself application is not associative)

More generally:

1. Function bodies extend to an unmatched right parenthesis

Example: (λx. y(λz. z)w)q

2. Application associates to the left

Example: e1 e2 e3 e4 is (((e1 e2) e3) e4).

• These strange-at-first rules are convenient

• Like in IMP, we really have trees

(with non-leaves labeled λ or “application”)

Dan Grossman CSE505 Fall 2008, Lecture 6 13

'

&

$

%

Simple encodings

Fairly crazy: we left out constants, conditionals, primitives, and data

structures

In fact, we’re Turing complete and can encode whatever we need

Motivation for encodings:

• Fun and mind-expanding

• Shows we aren’t oversimplifying the model

(“numbers are syntactic sugar”)

• Can show languages are too expressive

(e.g., unlimited C++ template instantiation)

Encodings are also just “(re)definition via translation”

Dan Grossman CSE505 Fall 2008, Lecture 6 14

'

&

$

%

Encoding booleans

There are two booleans and one conditional expression. The

conditional takes 3 arguments (via currying). If the first is one boolean

it evaluates to the second. If it’s the other boolean it evaluates to the

third.

Any 3 expressions meeting this specification (of “the boolean ADT”)

is an encoding of booleans.

“true” λx. λy. x

“false” λx. λy. y

“if” λb. λt. λf. b t f

This is just one encoding.

E.g.: “if” “true” v1 v2 →∗ v1.

Dan Grossman CSE505 Fall 2008, Lecture 6 15

'

&

$

%

Evaluation Order Matters

Careful: With CBV we need to “thunk”. . .

“if” “true” (λx. x) ((λx. x x)(λx. x x))︸ ︷︷ ︸
an infinite loop

diverges, but

“if” “true” (λx. x) (λz. ((λx. x x)(λx. x x))z))︸ ︷︷ ︸
a value that when called diverges

doesn’t.

Dan Grossman CSE505 Fall 2008, Lecture 6 16

'

&

$

%

Encoding pairs

The “pair ADT” has a constructor taking two arguments and two

selectors. The first selector returns the first argument passed to the

constructor and the second selector returns the second.

“mkpair” λx. λy. λz. z x y

“fst” λp. p(λx. λy. x)

“snd” λp. p(λx. λy. y)

Example:

“snd” (“fst” (“mkpair” (“mkpair” v1 v2) v3)) →∗ v2

Dan Grossman CSE505 Fall 2008, Lecture 6 17

'

&

$

%

Encoding lists

Rather than start from scratch, notice that booleans and pairs are

enough:

• Empty list is “mkpair” “false” “false”

• Non-empty list is “mkpair” “true” (“mkpair” h t)

• Is-empty is ...

• Head is ...

• Tail is ...

(Not too far from how lists are implemented.)

Dan Grossman CSE505 Fall 2008, Lecture 6 18

'

&

$

%

Encoding natural numbers

Known as “Church numerals” — see the text (or don’t bother).

We can define the naturals as “zero”, a “successor” function, an “is

equal” function, a “plus” function, etc.

The encoding is correct if “is equal” always returns what it should,

e.g., is-equal (plus (succ zero) (succ zero)) (succ(succ zero))

should evaluate to “true”

Dan Grossman CSE505 Fall 2008, Lecture 6 19

'

&

$

%

Recursion
Some programs diverge, but can we write useful loops? Yes!

To write a recursive function:

• Write a function that takes an f and calls it in place of recursion

– Example (in enriched language):

λf. λx. if (x = 0) then 1 else (x ∗ f(x − 1))

• Then apply “fix” to it to get a recursive function:

– “fix” λf. λx. if (x = 0) then 1 else (x ∗ f(x − 1))

• “fix” λf. e will reduce to something roughly equivalent to

e[(“fix”λf. e)/f], which is “unrolling the recursion once” (and

further unrollings will happen as necessary).

• The details, especially for CBV, are icky; the point is it’s possible

and you define “fix” only once

• Not on exam: “fix” λf. (λx. f (λy. x x y))(λx. f (λy. x x y))

Dan Grossman CSE505 Fall 2008, Lecture 6 20

'

&

$

%

Where are we

• Motivation for a new model

• CBV lambda calculus using substitution

• Notes on concrete syntax

• Simple Lambda encodings (it’s Turing complete!)

• Next: Other reduction strategies

• Defining substitution

Dan Grossman CSE505 Fall 2008, Lecture 6 21

'

&

$

%

Reduction “Strategies”

Suppose we allowed any substitution to take place in any order:

e → e′

(λx. e) e′ → e[e′/x]

e1 → e′
1

e1 e2 → e′
1 e2

e2 → e′
2

e1 e2 → e1 e′
2

e → e′

λx. e → λx. e′

Programming languages don’t typically do this, but it has uses:

• Optimize/pessimize/partially evaluate programs

• Prove programs equivalent by reducing them to the same term

Dan Grossman CSE505 Fall 2008, Lecture 6 22

'

&

$

%

Church-Rosser

What order you reduce is a “strategy”; equivalence is undecidable

Non-obvious fact (“Confluence” or “Church-Rosser”): In this pure

calculus, if e →∗ e1 and e →∗ e2, then there exists an e3 such that

e1 →∗ e3 and e2 →∗ e3.

“No strategy gets painted into a corner”

• Useful: No rewriting via the full-reduction rules prevents you from

getting an answer (Wow!)

Any rewriting system with this property is said to, “have the

Church-Rosser property.”

Dan Grossman CSE505 Fall 2008, Lecture 6 23

'

&

$

%

Some more equivalences

We can add two more rewritings:

• Replace λx. e with λy. e′ where e′ is e with “free” x replaced

with y.

• Replace λx. e x with e if x does not occur “free” in e.

With these, plus full reduction, plus “letting rules run either direction”

we have a “complete” rewriting system for equivalence.

• Under the accepted denotational semantics (not in 505), two

expressions denote the same thing if and only if this rewriting

system can turn one into the other. (Wow!)

Dan Grossman CSE505 Fall 2008, Lecture 6 24

'

&

$

%

Some other common semantics

We have seen “full reduction” and left-to-right CBV.

(Caml is unspecified order, but actually right-to-left.)

Claim: Without assignment, I/O, exceptions, . . . you cannot

distinguish left-to-right CBV from right-to-left CBV.

Another option is call-by-name (CBN):

e → e′

(λx. e) e′ → e[e′/x]

e1 → e′
1

e1 e2 → e′
1 e2

Even “smaller” than CBV!

Diverges strictly less often than CBV, e.g., (λy. λz. z)e. Can be

faster (fewer steps), but not usually (reuse args).

Dan Grossman CSE505 Fall 2008, Lecture 6 25

'

&

$

%

More on evaluation order

In “purely functional” code, evaluation order “only” matters for

performance and termination.

Example: Imagine CBV for conditionals!

let rec f n = if n=0 then 1 else n*(f (n-1))

Call-by-need or “lazy evaluation”: “Best of both worlds”? (E.g.:

Haskell) Evaluate the argument the first time it’s used. Memoize the

result. (Useful idiom for coders too.)

Can be formalized, but it’s not pretty.

For purely functional code, total equivalence with CBN and same

asymptotic time as CBV. (Note: asymptotic!) Hard to reason about if

language has side-effects.

Dan Grossman CSE505 Fall 2008, Lecture 6 26

