CSE 505:
Concepts of Programming Languages

Dan Grossman
Fall 2008
Lecture 5— Little Trusted Languages; Equivalence
Where are we

Today is IMP’s last lecture (hooray!). Done:

• Abstract Syntax
• Operational Semantics (large-step and small-step)
• Semantic properties of (sets of) programs
• “Pseudo-Denotational” Semantics

Today:

• Packet-filter languages and other examples
• Equivalence of programs in a semantics
• Equivalence of different semantics

Next time: Local variables, lambda-calculus
Packet Filters

Almost everything I know about packet filters:

- Some bits come in off the wire
- Some application(s) want the “packet” and some do not (e.g., port number)
- For safety, only the O/S can access the wire
- For extensibility, only an application can accept/reject a packet

Conventional solution goes to user-space for every packet and app that wants (any) packets

Faster solution: Run app-written filters in kernel-space
What we need

Now the O/S writer is defining the packet-filter language!

Properties we wish of (untrusted) filters:

1. Don’t corrupt kernel data structures
2. Terminate (within a time bound)
3. Run fast (the whole point)

Should we download some C/assembly code? (Get 1 of 3)

Should we make up a language and “hope” it has these properties?
Language-based approaches

1. Interpret a language.
 + clean operational semantics, + portable, - may be slow (+ filter-specific optimizations), - unusual interface

2. Translate a language into C/assembly.
 + clean denotational semantics, + employ existing optimizers, - upfront cost, - unusual interface

3. Require a conservative subset of C/assembly.
 + normal interface, - too conservative w/o help

IMP has taught us about (1) and (2) — we’ll get to (3)
A General Pattern

Packet filters move the code to the data rather than data to the code.

General reasons: performance, security, other?

Other examples:

- Query languages
- Active networks
Equivalence motivation

- Program equivalence (change program): code optimizer, code maintainer

- Semantics equivalence (change language): interpreter optimizer, language designer (prove properties for equivalent semantics with easier proof)

Warning: Proofs are easy with the right semantics and lemmas

Note: Small-step often has harder proofs but models more interesting things
What is equivalence

Equivalence depends on *what is observable*!

- **Partial I/O equivalence** (if terminates, same *ans*)
 - `while 1 skip` equivalent to everything
 - not transitive
- **Total I/O** (same termination behavior, same *ans*)
- **Total heap equivalence** (at termination, all (almost all) variables have the same value)
- **Equivalence plus complexity bounds**
 - Is $O(2^{n^n})$ really equivalent to $O(n)$?
- **Syntactic equivalence** (perhaps with renaming)
 - too strict to be interesting
Program Example: Strength Reduction

Motivation: Strength reduction a common compiler optimization due to architecture issues.

Theorem: $H ; e * 2 \downarrow c$ if and only if $H ; e + e \downarrow c$.

Proof sketch: Just need “inversion of derivation” and math (hmm, no induction).
Program Example: Nested Strength Reduction

Theorem: If \(e' \) has a subexpression of the form \(e \ast 2 \), then
\[H ; e' \downarrow c' \text{ if and only if } H ; e'' \downarrow c' \text{ where } e'' \text{ is } e' \text{ with } e \ast 2 \]
replaced with \(e + e \).

First some useful metanotation:

\[C ::= [\cdot] \mid C + e \mid e + C \mid C \ast e \mid e \ast C \]

\(C[e] \) is “\(C \) with \(e \) in the hole”.

So: If \((e_1 = C[e \ast 2] \) and \(e_2 = C[e + e] \)),
then \((H ; e_1 \downarrow c' \) if and only if \(H ; e_2 \downarrow c' \)).

Proof sketch: By induction on structure ("syntax height") of \(C \).
Small-step program equivalence

These sort of proofs also work with small-step semantics (e.g., our IMP statements), but tend to be more cumbersome, even to state.

Example: The statement-sequence operator is associative. That is,

(a) For all n, if $H ; s_1 ; (s_2 ; s_3) \rightarrow^n H' ; \text{skip}$ then there exist H'' and n' such that $H ; (s_1 ; s_2) ; s_3 \rightarrow^{n'} H'' ; \text{skip}$ and $H''(\text{ans}) = H'(\text{ans})$.

(b) If for all n there exist H' and s' such that $H ; s_1 ; (s_2 ; s_3) \rightarrow^n H' ; s'$, then for all n there exist H'' and s'' such that $H ; (s_1 ; s_2) ; s_3 \rightarrow^n H'' ; s''$.

(Proof needs a much stronger induction hypothesis.)

One way to avoid it: Prove large-step and small-step semantics equivalent, then prove program equivalences in whichever is easier.
Language Equivalence Example

IMP w/o multiply:

<table>
<thead>
<tr>
<th>CONST</th>
<th>VAR</th>
<th>ADD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(H; c \downarrow c)</td>
<td>(H; e_1 \downarrow c_1)</td>
</tr>
<tr>
<td></td>
<td>(H; x \downarrow H(x))</td>
<td>(H; e_2 \downarrow c_2)</td>
</tr>
</tbody>
</table>

\[H; e_1 + e_2 \downarrow c_1 + c_2 \]

IMP w/o multiply small-step:

<table>
<thead>
<tr>
<th>SVAR</th>
<th>SADD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(H; x \rightarrow H(x))</td>
</tr>
</tbody>
</table>

\[H; c_1 + c_2 \rightarrow c_1 + c_2 \]

<table>
<thead>
<tr>
<th>SLEFT</th>
<th>SRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H; e_1 \rightarrow e_1')</td>
<td>(H; e_2 \rightarrow e_2')</td>
</tr>
</tbody>
</table>

\[H; e_1 + e_2 \rightarrow e_1' + e_2' \]

Theorem:

Semantics are equivalent, i.e., \(H; e \downarrow c \) if and only if \(H; e \rightarrow^* c \).

Proof:

We prove the two directions separately.
Proof, part 1:

First assume $H; e \downarrow c$; show $\exists n. H; e \rightarrow^n c$.

Lemma (prove it!): If $H; e \rightarrow^n e'$, then $H; e_1 + e \rightarrow^n e_1 + e'$ and $H; e + e_2 \rightarrow^n e' + e_2$. (Proof uses SLEFT and SRIGHT.)

Given the lemma, prove by induction on height h of derivation of $H; e \downarrow c$:

- $h = 1$: Derivation is via CONST (so $H; e \rightarrow^0 c$) or VAR (so $H; e \rightarrow^1 c$).

- $h > 1$: Derivation ends with ADD, so e has the form $e_1 + e_2$, $H; e_1 \downarrow c_1$, $H; e_2 \downarrow c_2$, and c is $c_1 + c_2$.

 By induction $\exists n_1, n_2$. $H; e_1 \rightarrow^{n_1} c_1$ and $H; e_2 \rightarrow^{n_2} c_2$.

 So by our lemma $H; e_1 + e_2 \rightarrow^{n_1} c_1 + e_2$ and $H; c_1 + e_2 \rightarrow^{n_2} c_1 + c_2$.

 So SADD lets us derive $H; e_1 + e_2 \rightarrow^{n_1+n_2+1} c$.

Proof, part 2:

Now assume $\exists n. \ H; e \rightarrow^n c$; show $H; e \downarrow c$. By induction on n:

- $n = 0$: e is c and \texttt{CONST} lets us derive $H; c \downarrow c$.
- $n > 0$: $\exists e'$. $H; e \rightarrow e'$ and $H; e' \rightarrow^{n-1} c$. By induction $H; e' \downarrow c$.

So this lemma suffices: If $H; e \rightarrow e'$ and $H; e' \downarrow c$, then $H; e \downarrow c$.

Prove the lemma by induction on height h of derivation of $H; e \rightarrow e'$:

- $h = 1$: Derivation ends with \texttt{SVAR} (so $e' = c = H(x)$ and \texttt{VAR} gives $H; x \downarrow H(x)$) or with \texttt{SADD} (so e is some $c_1 + c_2$ and $e' = c = c_1 + c_2$ and \texttt{ADD} gives $H; c_1 + c_2 \downarrow c_1 + c_2$).
- $h > 1$: Derivation ends with \texttt{SLEFT} or \texttt{SRIGHT} ...
Proof, part 2 continued:

If e has the form $e_1 + e_2$ and e' has the form $e'_1 + e_2$, then the assumed derivations end like this:

$$
\begin{align*}
H; e_1 &\rightarrow e'_1 \\
\hline
H; e_1 + e_2 &\rightarrow e'_1 + e_2
\end{align*}
$$

Using $H; e_1 \rightarrow e'_1$, $H; e'_1 \downarrow c_1$, and the induction hypothesis, $H; e_1 \downarrow c_1$. Using this fact, $H; e_2 \downarrow c_2$, and ADD, we can derive $H; e_1 + e_2 \downarrow c_1 + c_2$.

(If e has the form $e_1 + e_2$ and e' has the form $e_1 + e'_2$, the argument is analogous to the previous case (prove it!).)
A nice payoff

Theorem: The small-step semantics is deterministic, i.e., if $H; e \rightarrow^* c_1$ and $H; e \rightarrow^* c_2$, then $c_1 = c_2$.

Not obvious (see SLEFT and SRIGHT), nor do I know a direct proof.

- Given $(((1 + 2) + (3 + 4)) + (5 + 6)) + (7 + 8)$ there are many execution sequences, which all produce 36 but with different intermediate expressions.

Proof:

- Large-step evaluation is deterministic (easy proof by induction).
- Small-step and and large-step are equivalent (just proved that).
- So small-step is deterministic.
- (Convince yourself a deterministic and a nondeterministic semantics can’t be equivalent with our definition of equivalence.)
Conclusions

• Equivalence is a subtle concept.

• Proofs “seem obvious” only when the definitions are right.

• Some other language-equivalence claims:
 Replace WHILE rule with

\[
\begin{align*}
H ; e \downarrow c \quad & c \leq 0 \\
H ; \text{while } e \; s \rightarrow H ; \text{skip} \\
H ; e \downarrow c \quad & c > 0 \\
H ; \text{while } e \; s \rightarrow H ; \text{while } e \; s
\end{align*}
\]

Theorem: Languages are equivalent. (True)
Change syntax of heap and replace ASSIGN and VAR rules with

\[
\begin{align*}
H ; x := e \rightarrow H, x \leftarrow e ; \text{skip} \\
H ; H(x) \downarrow c
\end{align*}
\]

Theorem: Languages are equivalent. (False)