Where we are

• Done: Caml basics, IMP syntax, structural induction
• Today: IMP operational semantics
• Tonight: You could (almost?) finish homework 1
IMP’s abstract syntax is defined inductively:

\[
\begin{align*}
 s & ::= \text{skip} \mid x := e \mid s ; s \mid \text{if } e \ s \ s \mid \text{while } e \ s \\
 e & ::= c \mid x \mid e + e \mid e \ast e \\
 (c & \in \{-2, -1, 0, 1, 2, \ldots\}) \\
 (x & \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\})
\end{align*}
\]

We haven’t said what programs mean yet! (Syntax is boring)

Encode our “social understanding” about variables and control flow
Outline

• Semantics for expressions
 1. Informal idea; the need for *heaps*
 2. Definition of heaps
 3. The evaluation *judgment* (a relation form)
 4. The evaluation *inference rules* (the relation definition)
 5. Using inference rules
 – *Derivation trees* as interpreters
 – Or as proofs about expressions
 6. *Metatheory*: Proofs about the semantics

• Then semantics for statements
 – ...
Informal idea

Given e, what c does it evaluate to?

It depends on the values of variables (of course).

Use a heap H to encode a total function from variables to constants.

- Could use partial functions, but then $\exists H$ and e for which there is no c.

We’ll define a relation over triples of H, e, and c.

- Will turn out to be function if we view H and e as inputs and c as output.

- With our metalanguage, easier to define a relation and then prove its a function (if it is).
Heaps

\[H ::= \cdot \mid H, x \mapsto c \]

\[
H(x) = \begin{cases}
 c & \text{if } H = H', x \mapsto c \\
 H'(x) & \text{if } H = H', y \mapsto c' \\
 0 & \text{if } H = \cdot
\end{cases}
\]

Last case avoids “errors” (makes function \textit{total})

“What heap to use” will arise in the statement semantics

• For expression evaluation, “we are given an H”
The judgment

We will write:

\[H ; e \downarrow c \]

to mean, “\(e \) evaluates to \(c \) under heap \(H \)”.

It is just a relation on triples of the form \((H, e, c)\).

We just made up metasyntax \(H ; e \downarrow c \) to follow PL convention and to distinguish it from other relations.

We can write: \(_, x \mapsto 3 ; x + y \downarrow 3 \), which will turn out to be true (this triple will be in the relation we define).

Or: \(_, x \mapsto 3 ; x + y \downarrow 6 \), which will turn out to be false (this triple will not be in the relation we define).
Inference rules

<table>
<thead>
<tr>
<th>Const</th>
<th>Var</th>
<th>Add</th>
<th>Mult</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H; c \downarrow c$</td>
<td>$H; x \downarrow H(x)$</td>
<td>$H; e_1 \downarrow c_1$</td>
<td>$H; e_1 \downarrow c_1$</td>
</tr>
<tr>
<td>$H; e_2 \downarrow c_2$</td>
<td>$H; e_1 + e_2 \downarrow c_1 + c_2$</td>
<td>$H; e_1 \downarrow c_1 \downarrow c_2$</td>
<td>$H; e_1 \downarrow c_1 \downarrow c_2$</td>
</tr>
</tbody>
</table>

Bottom: conclusion

Top: hypotheses

By definition, if all hypotheses hold, then the conclusion holds.

Each rule is a schema you “instantiate consistently”.

- So rules “work” “for all” H, c, e_1, etc.
- But “each” e_1 has to be the “same” expression.
Instantiating rules

Example instantiation:

\[
\begin{align*}
&\cdot, \, y \mapsto 4 \; ; \; 3 + y \Downarrow 7 \quad \cdot, \, y \mapsto 4 \; ; \; 5 \Downarrow 5 \\
&\cdot, \, y \mapsto 4 \; ; \; (3 + y) + 5 \Downarrow 12
\end{align*}
\]

Instantiates:

\[
\begin{align*}
&H \; ; \; e_1 \Downarrow c_1 \quad H \; ; \; e_2 \Downarrow c_2 \\
&H \; ; \; e_1 + e_2 \Downarrow c_1 + c_2
\end{align*}
\]

with \(H = \cdot, \, y \mapsto 4, \, e_1 = (3 + y), \, c_1 = 7, \, e_2 = 5, \, c_2 = 5 \)
Derivations

A (complete) derivation is a tree of instantiations with axioms at the leaves.

Example:

\[
\begin{align*}
\cdot, y \mapsto 4 & ; 3 \Downarrow 3 \\
\cdot, y \mapsto 4 & ; y \Downarrow 4 \\
\cdot, y \mapsto 4 & ; 3 + y \Downarrow 7 \\
\cdot, y \mapsto 4 & ; 5 \Downarrow 5 \\
\cdot, y \mapsto 4 & ; (3 + y) + 5 \Downarrow 12
\end{align*}
\]

So \(H ; e \Downarrow c \) if there exists a derivation with \(H ; e \Downarrow c \) at the root.
So what relation do our inference rules define?

- Start with empty relation (no triples) R_0

- Let R_i be R_{i-1} union all $H; e \Downarrow c$ such that we can instantiate some inference rule to have conclusion $H; e \Downarrow c$ and all hypotheses in R_{i-1}.
 - So R_i is all triples at the bottom of height-j complete derivations for $j \leq i$.

- R_∞ is the relation we defined
 - All triples at the bottom of complete derivations.

For the math folks: R_∞ is the smallest relation closed under the inference rules.
What are these things?

We can view the inference rules as defining an *interpreter*.

- Complete derivation shows recursive calls to the “evaluate expression” function.
 - Recursive calls from conclusion to hypotheses.
 - Syntax-directed means the interpreter need not “search”.

- See OCaml code in homework 1.

Or we can view the inference rules as defining a *proof system*.

- Complete derivation establishes facts from other facts starting with axioms.
 - Facts established from hypotheses to conclusions.
Some theorems

- Progress: For all H and e, there exists a c such that $H ; e \downarrow c$.

- Determinacy: For all H and e, there is at most one c such that $H ; e \downarrow c$.

We rigged it that way...

what would division, undefined-variables, or gettime() do?

Note: Our semantics is syntax-directed.

Proofs are by induction on the the structure (i.e., height) of the expression e.
On to statements

A statement doesn’t produce a constant.

It produces a new, possibly-different heap.

• If it terminates.

We could define $H_1 ; s \Downarrow H_2$

• Would be a partial function from H_1 and s to H_2.

• Works fine; could be a homework problem.

Instead we’ll define a “small-step” semantics and then “iterate” to “run the program”.

$H_1 ; s_1 \rightarrow H_2 ; s_2$
Statement semantics

\[H_1 ; s_1 \rightarrow H_2 ; s_2 \]

ASSIGN

\[H ; e \downarrow c \]

\[H ; x := e \rightarrow H, x \mapsto c ; \text{skip} \]

SEQ1

\[H ; \text{skip}; s \rightarrow H ; s \]

SEQ2

\[H ; s_1 \rightarrow H' ; s'_1 \]

\[H ; s_1 ; s_2 \rightarrow H' ; s'_1 ; s'_2 \]

IF1

\[H ; e \downarrow c \quad c > 0 \]

\[H ; \text{if } e \; s_1 \; s_2 \rightarrow H ; s_1 \]

IF2

\[H ; e \downarrow c \quad c \leq 0 \]

\[H ; \text{if } e \; s_1 \; s_2 \rightarrow H ; s_2 \]
Statement semantics cont’d

What about \textbf{while} \(e \ s \) (do \(s \) and loop if \(e > 0 \))?

\begin{align*}
\textbf{WHILE} \\
\phantom{\textbf{WHILE}} H \ ; \ \textbf{while} \ e \ s \rightarrow H \ ; \ \textbf{if} \ e \ ((s; \ \textbf{while} \ e \ s) \ \textbf{skip})
\end{align*}

Many other equivalent definitions possible
Program semantics

We defined $H ; s \rightarrow H' ; s'$, but what does “$s$” mean/do?

Our machine iterates: $H_1 ; s_1 \rightarrow H_2 ; s_2 \rightarrow H_3 ; s_3 \ldots$,

\textit{with each step justified by a complete derivation using our single-step statement semantics}

Let $H_1 ; s_1 \rightarrow^* H_2 ; s_2$ mean “becomes after 0 or more steps” and pick a special “answer” variable ans

The program s produces c if $\cdot ; s \rightarrow^* H ; \text{skip}$ and $H(ans) = c$

Does every s produce a c?
Example program execution

\[x := 3; (y := 1; \textbf{while } x \ (y := y \ast x; x := x - 1)) \]

Let’s write some of the state sequence. You can justify each step with a full derivation. Let \(s = (y := y \ast x; x := x - 1) \).

\[
\begin{align*}
\cdot &; x := 3; y := 1; \textbf{while } x \ s \\
\rightarrow &; x \mapsto 3; \textbf{skip}; y := 1; \textbf{while } x \ s \\
\rightarrow &; x \mapsto 3; y := 1; \textbf{while } x \ s \\
\rightarrow^2 &; x \mapsto 3, y \mapsto 1; \textbf{while } x \ s \\
\rightarrow &; x \mapsto 3, y \mapsto 1; \textbf{if } x \ (s; \textbf{while } x \ s) \ \textbf{skip} \\
\rightarrow &; x \mapsto 3, y \mapsto 1; y := y \ast x; x := x - 1; \textbf{while } x \ s
\end{align*}
\]
Continued...

\[\rightarrow^2 \cdot, x \leftarrow 3, y \leftarrow 1, y \leftarrow 3; \ x := x - 1; \textbf{while} x \ s\]

\[\rightarrow^2 \cdot, x \leftarrow 3, y \leftarrow 1, y \leftarrow 3, x \leftarrow 2; \textbf{while} x \ s\]

\[\rightarrow \ldots, y \leftarrow 3, x \leftarrow 2; \textbf{if} \ x (s; \textbf{while} x \ s) \textbf{skip}\]

\[\ldots\]

\[\rightarrow \ldots, y \leftarrow 6, x \leftarrow 0; \textbf{skip}\]
Where we are

We have defined $H; e \downarrow c$ and $H; s \rightarrow H'; s'$ and extended the latter to give s a meaning.

The way we did expressions is “large-step” or “natural”.

The way we did statements is “small-step”.

So now you have seen both.

Large-step does not distinguish errors and divergence.

- But we defined IMP to have no errors
- And expressions never diverge
Establishing Properties

We can prove a property of a terminating program by “running” it.

Example: Our last program terminates with x holding 0.

We can prove a program diverges, i.e., for all H and n,
\[\cdot; s \xrightarrow{n} H; \text{skip} \]
cannot be derived.

Example: while 1 skip

By induction on n with stronger induction hypothesis: If we can derive
\[\cdot; s \xrightarrow{n} H; s' \]
then s' is while 1 skip or if 1 (skip; while 1 skip) skip or skip; while 1 skip.
More General Proofs

We can prove properties of executing all programs (satisfying another property)

Example: If H and s have no negative constants and $H ; s \rightarrow^* H' ; s'$, then H' and s' have no negative constants.

Example: If for all H, we know s_1 and s_2 terminate, then for all H, we know $H ; (s_1 ; s_2)$ terminates.