
'

&

$

%

CSE 505:
Concepts of Programming Languages

Dan Grossman

Fall 2008

Lecture 13— More Parametric Polymorphism; Recursive Types; Type

Abstraction

Dan Grossman CSE505 Fall 2008, Lecture 13 1

'

&

$

%

Where are we

Have defined System F. Now:

• Metatheory (what properties does it have)

• What (else) is it good for

• How/why ML is more restrictive and implicit

Then:

• Recursive types (also use type variables, but differently)

• Existential types (dual to universal types)

Dan Grossman CSE505 Fall 2008, Lecture 13 2

'

&

$

%

Metatheory

• Type-safe (need a Type Substitution Lemma)

• All programs terminate (shocking! we saw id [τ] id)

• Parametricity, theorems for free

– Example: If ·; · ` e : ∀α.∀β.(α ∗ β) → (β ∗ α), then e is

equivalent to Λα. Λβ. λx:α ∗ β. (x.2, x.1).
Every term with this type is the swap function!!

Intuition: e has no way to make an α or a β and it cannot tell

what α or β are or raise an exception or diverge...

• Types do not affect run-time behavior

Note: Mutation “breaks everything”

depth subtyping: hw4, termination: hw3, parametricity: hw4

Dan Grossman CSE505 Fall 2008, Lecture 13 3

'

&

$

%

Security from safety?

Example: A process e should not access files it did not open (fopen

can check permissions)

Type-check an untrusted thread e:

·; · ` e : ∀α.{fopen : string → α, fread : α → int} → unit.

Type-checker ensures that a process won’t “forge a file handle” and

pass it to fread.

So fread doesn’t need to check (faster), file handles don’t need to be

encrypted (safer), etc.

Dan Grossman CSE505 Fall 2008, Lecture 13 4

'

&

$

%

Moral of Example

In STλC, type safety just means not getting stuck.

With type abstraction, it enables secure interfaces!

Suppose we (the system library) implement file-handles as ints. Then

we instantiate α with int, but untrusted code cannot tell.

Memory safety is a necessary but insufficient condition for

language-based enforcement of strong abstractions.

Dan Grossman CSE505 Fall 2008, Lecture 13 5

'

&

$

%

Has anything changed?

We said polymorphism was about “many types for same term”, but for

clarity and easy checking, we changed the syntax via Λα. e and e [τ]
and the operational semantics via type substitution.

Claim: The operational semantics did not “really” change; types need

not exist at run-time.

More formally: There is a translation from System F to the untyped

lambda-calculus (with constants) that erases all types and produces an

equivalent program.

Strengthened induction hypothesis: If e → e1 in System F and

erase(e) → e2 in untyped lambda-calculus, then e2 = erase(e1).

“Erasure and evaluation commute”

Dan Grossman CSE505 Fall 2008, Lecture 13 6

'

&

$

%

Erasure

Erasure is easy to define:

erase(c) = c

erase(x) = x

erase(e1 e2) = erase(e1) erase(e2)

erase(λx:τ . e) = λx. erase(e)

erase(Λα. e) = λ . erase(e)

erase(e [τ]) = erase(e) 0

In pure System F, preserving evaluation order isn’t crucial, but it is

with fix, exceptions, mutation, etc.

Dan Grossman CSE505 Fall 2008, Lecture 13 7

'

&

$

%

Connection to reality

System F has been one of the most important theoretical PL models

since the 1970s and inspires languages like ML.

But you have seen ML polymorphism and it looks different. In fact, it

is an implicitly typed restriction of System F.

And these two things ((1) implicit, (2) restriction) have everything to

do with each other.

Dan Grossman CSE505 Fall 2008, Lecture 13 8

'

&

$

%

Restrictions

• All types have the form ∀α1, . . . , αn.τ where n ≥ 0 and τ has

no ∀. (Prenex-quantification; no first-class polymorphism.)

• Only let (rec) variables (e.g., x in let x = e1 in e2) can have

polymorphic types. So n = 0 for function arguments, pattern

variables, etc. (Let-bound polymorphism)

– So cannot (always) desugar let to λ in ML.

• For let rec f x = e1 in e2, the variable f can have type

∀α1, . . . , αn.τ1 → τ2 only if every use of f in e1 instantiates

each αi with αi. (No polymorphic recursion)

• Let variables can be polymorphic only if e1 is a “syntactic value”

– a variable, constant, function definition, ...

– Called the “value restriction”

Dan Grossman CSE505 Fall 2008, Lecture 13 9

'

&

$

%

Why?

ML-style polymorphism can seem weird after you have seen System F.

And the restrictions do come up in practice, though tolerable.

• Type inference for System F (given untyped e, is there a System F

term e′ such that erase(e′) = e) is undecidable. (1995).

• Type inference for ML with polymorphic recursion is undecidable

(1992).

• Type inference for ML is decidable and efficient in practice,

though pathological programs of size O(n) and run-time O(n)
can have types of size O(22n

).

• The type inference algorithm (which many of you have seen in

AI!) is unsound in the presence of ML-style mutation, but the

value-restriction restores soundness.

Dan Grossman CSE505 Fall 2008, Lecture 13 10

'

&

$

%

Recovering lost ground?

Extensions to the ML type system to be closer to System F are judged

by:

• Soundness: Do programs still not get stuck?

• Conservatism: Does every old ML program still type-check?

• Power: Does it accept all/most programs from System F?

• Convenience: Are many new types still inferred?

Dan Grossman CSE505 Fall 2008, Lecture 13 11

'

&

$

%

That was a lot!

We saw System F and discussed its many amazing properties.

We compared System F to ML-style polymorphism, which should make

more sense now.

In other versions of 505:

• How to do type inference for ML (algorithm almost fits on a slide)

• Mutation (see homework)

Dan Grossman CSE505 Fall 2008, Lecture 13 12

'

&

$

%

Where are we

• System F gave us type abstraction

– code reuse, strong abstractions

• Recursive Types

– For building unbounded data structures

– Turing-completeness without a fix primitive

• Existential types

– First-class abstract types

– Closely related to closures and objects

All this plus type constructors to understand our list-library example

Dan Grossman CSE505 Fall 2008, Lecture 13 13

'

&

$

%

Recursive Types

We could add list types (list(τ)) and primitives ([], ::, match), but we

want user-defined recursive types.

Intuition:

type intlist = Empty | Cons int * intlist

Which is roughly:

type intlist = unit + (int * intlist)

• Seems like a named type is unavoidable

– But that’s what we thought with let rec and we used fix

• Analogously to fix λx. e, we’ll do µα.τ

– Each α “stands for” entire µα.τ

Dan Grossman CSE505 Fall 2008, Lecture 13 14

'

&

$

%

Mighty µ

In τ , type variable α stands for µα.τ , bound by µ

Examples (of many possible encodings):

• int list (finite or infinite): µα.unit + (int ∗ α)

• int list (infinite “stream”): µα.int ∗ α

– Need laziness (thunking) or mutation to build such a thing

• int list list: µα.unit + ((µβ.unit + (int ∗ β)) ∗ α)

Examples where type variables appear multiple times:

• int tree (data at nodes): µα.unit + (int ∗ α ∗ α)

• int tree (data at leaves): µα.int + (α ∗ α)

Dan Grossman CSE505 Fall 2008, Lecture 13 15

'

&

$

%

Using µ types

How do we build and use int lists (µα.unit + (int ∗ α))?

We would like:

• empty list = A(()).
Has type: µα.unit + (int ∗ α)

• cons = λx:int. λy:(µα.unit + (int ∗ α)). B((x, y))
Has type:

int → (µα.unit + (int ∗ α)) → (µα.unit + (int ∗ α))

• head =

λx:(µα.unit + (int ∗ α)). match x with A . A(()) | By. B(y.1)
Has type: (µα.unit + (int ∗ α)) → (unit + int)

But our typing rules allow none of this (yet)

Dan Grossman CSE505 Fall 2008, Lecture 13 16

'

&

$

%

Using µ types continued

For empty list = A(()), one typing rule applies:

∆; Γ ` e : τ1 ∆ `τ2

∆; Γ ` A(e) : τ1 + τ2

So we could show

∆; Γ ` A(()) : unit + (int ∗ (µα.unit + (int ∗ α)))
(since FTV (int ∗ µα.unit + (int ∗ α)) = ∅ ⊆ ∆).

But we want µα.unit + (int ∗ α).

Notice: unit + (int ∗ (µα.unit + (int ∗ α))) is

(unit + (int ∗ α))[(µα.unit + (int ∗ α))/α].

The key: Subsumption — recursive types are equal to their “unrolling”

Dan Grossman CSE505 Fall 2008, Lecture 13 17

'

&

$

%

Return of subtyping

So we could use subsumption and these subtyping rules:

roll

τ [(µα.τ)/α] ≤ µα.τ

unroll

µα.τ ≤ τ [(µα.τ)/α]

Subtyping can “roll” or “unroll” a recursive type.

Can now give empty-list, cons, and head the types we want:

Constructors use roll, destructors use unroll.

Notice how little we did: One new form of type (µα.τ) and two new

subtyping rules.

(Skipping: Depth subtyping on recursive types is very interesting.)

Dan Grossman CSE505 Fall 2008, Lecture 13 18

'

&

$

%

Metatheory

Despite our minimal additions, we must reconsider how recursive types

change STλC and System F:

• Erasure (no run-time effect): unchanged

• Termination: changed!

– (λx:µα.α → α. x x)(λx:µα.α → α. x x)

– In fact, we’re now Turing-complete without fix

(actually, can type-check every closed λ term)

• Safety: still safe, but Canonical Forms harder

• Inference: Shockingly efficient for “STλC plus µ”

(A great contribution of PL theory with applications in OO and

XML-processing languages.)

Dan Grossman CSE505 Fall 2008, Lecture 13 19

'

&

$

%

Syntax-directed µ types

Recursive types via subsumption “seems magical” – we can also do it

explicitly by telling the type-checker how to roll and unroll.

“Iso-recursive” types (remove subtyping, add expressions):

τ ::= . . . | µα.τ

e ::= . . . | rollµα.τ e | unroll e
v ::= . . . | rollµα.τ v

e → e′

rollµα.τ e → rollµα.τ e′

e → e′

unroll e → unroll e′

unroll (rollµα.τ v) → v

∆; Γ ` e : τ [(µα.τ)/α]

∆; Γ ` rollµα.τ e : µα.τ

∆; Γ ` e : µα.τ

∆; Γ ` unroll e : τ [(µα.τ)/α]

Dan Grossman CSE505 Fall 2008, Lecture 13 20

'

&

$

%

Syntax-directed, cont’d

Type-checking is syntax-directed / No subtyping necessary.

Canonical Forms, Preservation, and Progress are simpler.

This is an example of a key trade-off in language design:

• Implicit typing can be impossible, difficult, or confusing

• Explicit coercions can be annoying and clutter language with

no-ops

• Most languages do some of each

Anything is decidable if you make the code producer give the

implementation enough “hints” about the “proof”

Dan Grossman CSE505 Fall 2008, Lecture 13 21

'

&

$

%

ML datatypes revealed

How is µα.τ related to type t = Foo of int | Bar of int * t

Using a constructor is a “sum-injection” then implicit roll.

So Foo e is really rollt Foo(e).
That is, Foo e has type t (the rolled type).

A pattern-match has an implicit unroll.

So match e with... is really match unroll e with...

This “trick” works because different recursive types use different tags

– so we know which type to roll to

Dan Grossman CSE505 Fall 2008, Lecture 13 22

'

&

$

%

Back to our goal

We are understanding this interface and its nice properties:

type ’a mylist;

val mt_list : ’a mylist

val cons : ’a -> ’a mylist -> ’a mylist

val decons : ’a mylist -> ((’a * ’a mylist) option)

val length : ’a mylist -> int

val map : (’a -> ’b) -> ’a mylist -> ’b mylist

We can now do it, if we expose the definition of mylist.

mt_list : ∀α.µβ.unit + (α ∗ β)
cons: ∀α.α → (µβ.unit + (α ∗ β)) → (µβ.unit + (α ∗ β))
...

Dan Grossman CSE505 Fall 2008, Lecture 13 23

'

&

$

%

Abstract Types

So that clients cannot “forge” lists or rely on their implementation

(breaking code if we change the type definition), we want to hide what

mylist actually is.

Define an interface such that well-typed list-clients cannot break the

list-library abstraction.

To simplify the discussion very slightly, we’ll consider just myintlist.

• mylist is a type constructor, a function that given a type gives a

type.

Dan Grossman CSE505 Fall 2008, Lecture 13 24

'

&

$

%

The Type-Application Approach

We can hide myintlist like we hid file-handles:

(Λα. λx:τ1. list client) [τ2] list library

where:

• τ1 is

{mt : α,

cons : int → α → α,

decons : α → unit + (int ∗ α),
. . .}

• τ2 is µβ.unit + (int ∗ β)

• list client projects from record x to get list functions

Dan Grossman CSE505 Fall 2008, Lecture 13 25

'

&

$

%

Evaluating ADT via Type Application

(Λα. λx:τ1. list client) [τ2] list library

Plus:

• Effective

• Straightforward use of System F

Minus:

• The library does not say myintlist should be abstract

– It relies on clients to abstract it

• Different list-libraries have different types, so can’t choose one at

run-time or put them in a data structure:

– if n>10 then hashset_lib else listset_lib

– Values produced by different libraries must have different

types, but libraries can have the same type

Dan Grossman CSE505 Fall 2008, Lecture 13 26

'

&

$

%

The OO Approach

mt list :
µβ.{cons : int → β, decons : unit → (unit + (int ∗ β)), . . .}

mt list is an object — a record of functions plus private data

The cons field holds a function that returns a new record of functions

Implementation uses recursion and “hidden fields” in an essential way

• In ML, free variables are the “hidden fields”

• In OO, private fields or abstract interfaces “hide fields”

(See Caml code for a slightly different example.)

Dan Grossman CSE505 Fall 2008, Lecture 13 27

'

&

$

%

Evaluation Closure/OO Approach

Plus:

• It works in popular languages (no explicit type variables)

• List-libraries have the same type

Minus:

• Changed the interface (no big deal?)

• Fails on “strong” binary ((n > 1)-ary) operations

– Have to write append in terms of cons and decons

– Can be impossible

(silly example: see type t2 in ML file)

Dan Grossman CSE505 Fall 2008, Lecture 13 28

'

&

$

%

The Existential Approach

We achieved our goal two different ways, but each had some drawbacks

There is a direct way to model ADTs that captures their essence quite

nicely: types of the form ∃α.τ

Can be formalized, but we’ll just show the idea and how we can use it

to encode closures (e.g., for callbacks)

(Come ask me if you want to see the semantics and typing rules)

Preaching: Existential types have been around for over 20 years. They

are not that complicated. They should be in our PLs.

Dan Grossman CSE505 Fall 2008, Lecture 13 29

'

&

$

%

Our library with ∃
pack (µα.unit + (int ∗ α)), list library as

∃β.{mt : β,

cons : int → β → β,

decons : β → unit + (int ∗ β), . . .}

Another library would “pack” a different type and implementation, but

have the same overall type.

Binary operations work fine: add append : β → β → β

Libraries are first-class, but a use of a library must be in a scope that

“remembers which β” describes that library.

(If use two libraries in same scope, can’t pass the result of one’s cons

to the other’s decons because the two libraries will use different type

variables.)

Dan Grossman CSE505 Fall 2008, Lecture 13 30

'

&

$

%

Closures and Existentials

There’s a deep connection between existential types and how closures

are used/compiled. “Call-backs” are the canonical example.

Caml:

• Interface: val onKeyEvent : (int -> unit) -> unit

• Implementation:

let callBacks : (int -> unit) list ref = ref []

let onKeyEvent f = callBacks := f::(!callBacks)

let keyPress i = List.iter (fun f -> f i) !callBacks

Each registered function can have a different environment (free

variables of different types), yet every function has type int->unit

Dan Grossman CSE505 Fall 2008, Lecture 13 31

'

&

$

%

Closures and Existentials
C:

typedef struct { void* env; void (*f)(void*,int); } * cb_t;

• Interface: void onKeyEvent(cb_t);

• Implementation (assuming a list library):

list_t callBacks = NULL;

void onKeyEvent(cb_t cb){callBacks=cons(cb,callBacks);}

void keyPress(int i) {

for(list_t lst=callBacks; lst; lst=lst->tl)

lst->hd->f(lst->hd->env, i);

}

Standard problems using subtyping (t*≤void*) instead of α:

• Client must provide an f that casts back to t*

• Typechecker lets library pass any pointer to f

Dan Grossman CSE505 Fall 2008, Lecture 13 32

'

&

$

%

Closures and Existentials

Cyclone (aka Dan’s thesis): (has ∀α.τ and ∃α.τ but not closures)

typedef struct {<‘a> ‘a env; void (*f)(‘a,int); } * cb_t;

• Interface: void onKeyEvent(cb_t);

• Implementation (assuming a list library):

list_t<cb_t> callBacks = NULL;

void onKeyEvent(cb_t cb){callBacks=cons(cb,callBacks);}

void keyPress(int i) {

for(list_t<cb_t> lst=callBacks; lst; lst=lst->tl) {

let {<‘a> x, y} = *lst->hd; // pattern-match

y(x,i); // no other argument to y typechecks!

}

}

Not shown: When creating a cb_t, must prove “the types match up”

Dan Grossman CSE505 Fall 2008, Lecture 13 33

