
'

&

$

%

CSE 505:
Concepts of Programming Languages

Dan Grossman

Fall 2008

Lecture 11— Efficient λ evaluators; Continuations; Polymorphism;

Subtyping

Dan Grossman CSE505 Fall 2008, Lecture 11 1

'

&

$

%

Where are we

• Recall our use of evaluation contexts to make a more concise

operational semantics

• Now use that basic concept to

– Implement interpreters more efficiently

– Implement interpreters using more primitive operations

– Define continuations

• Then “back to types”

– Flavors of polymorphism

– Start subtyping

Dan Grossman CSE505 Fall 2008, Lecture 11 2

'

&

$

%

Review
Evaluation contexts: expressions with 1 hole where “real work” occurs:

E ::= [·] | E e | v E | (E, e) | (v, E) | E.1 | E.2

| A(E) | B(E) | (match E with Ax. e1 | By. e2)

Define “filling the hole” E[e] in the obvious way (see ML code).

Semantics is now just:
e

p→ e′

E[e] → E[e′]

(λx. e) v
p→ e[v/x] (v1, v2).1

p→ v1 (v1, v2).2
p→ v2

match A(v) with Ax. e1 | By. e2
p→ e1[v/x]

match B(v) with Ay. e1 | Bx. e2
p→ e2[v/x]

Theorem (Unique Decomposition): If · ` e : τ , then e is a value or there is

exactly one decomposition of e.

Dan Grossman CSE505 Fall 2008, Lecture 11 3

'

&

$

%

Second Implementation

So far two interpreters:

• Old-fashioned small-step: derive a step, and iterate

• Evaluation-context small-step: decompose, fill the whole with the

result of the primitive-step, and iterate

Decomposing “all over” each time is awfully redundant (as is the

old-fashioned build a full-derivation of each step).

Now let’s be more efficient...

Dan Grossman CSE505 Fall 2008, Lecture 11 4

'

&

$

%

Maintain a stack

We can “incrementally maintain the decomposition” if we represent it

conveniently. Instead of nested contexts, we can keep a list:

S ::= · | Lapp(e)::S | Rapp(v)::S | Lpair(e)::S | ...

This new form of evaluation-context is a stack.

See the code: This representation is isomorphic (there’s a bijection) to

evaluation contexts.

Dan Grossman CSE505 Fall 2008, Lecture 11 5

'

&

$

%

Stack-based machine

Since we don’t re-decompose at each step, our “program state” is a

stack and an expression.

At each step, the stack may grow (to recur on a nested expression) or

shrink (to do a primitive step)

Now that we have an explicit stack, we are not using the

meta-language’s call-stack (the interpreter is just a while-loop).

But substitution is still using the meta-language’s call-stack.

Dan Grossman CSE505 Fall 2008, Lecture 11 6

'

&

$

%

Stack-based with environments

Our last step uses environments, much like you will in homework 3.

Now everything in our interpreter is tail-recursive (beyond the explicit

representation of environments and stacks, we need only O(1) space).

You could implement this last interpreter in assembly without using a

call instruction.

• Just need malloc

Dan Grossman CSE505 Fall 2008, Lecture 11 7

'

&

$

%

Conclusions

Proving each interpreter version equivalent to the next is tractable.

In our last version, every primitive step is O(1) time and space except

variable lookup (but that’s easily fixed in a compiler).

Perhaps more interestingly, evaluation contexts “give us a handle” on

the “surrounding computation”, which will let us do funky things like

make “stacks” (called continuations) first-class in the language.

• “get current continuation; bind it to a variable”

• “replace current continuation with saved one”

Dan Grossman CSE505 Fall 2008, Lecture 11 8

'

&

$

%

Continuations

First-class continuations in one slide:

e ::= . . . | letcc x. e | throw e e | cont E

v ::= . . . | cont E

E ::= . . . | throw E e | throw v E

E[letcc x. e] → E[(λx. e)(cont E)]

E[throw (cont E′) v] → E′[v]

Very powerful and general: For example, non-preemptive

multithreading in the language.

Dan Grossman CSE505 Fall 2008, Lecture 11 9

'

&

$

%

Where are we

• Have an operational model of functions, data structures,

primitives, etc.

• Have a simple type system to ensure we use functions as

functions, pairs as pairs, constants as constants, ...

• Digressed to:

– compare types to logic

– connect our textual rewriting to efficient implementations

using stacks and environments

• Haven’t done recursive types (e.g., lists) and exceptions.

– Mutation on homework

• But first, be less restrictive without affecting run-time behavior

Dan Grossman CSE505 Fall 2008, Lecture 11 10

'

&

$

%

Being Less Restrictive

“Will a λ term get stuck?” is undecidable, so a sound, decidable type

system can always be made less restrictive.

An “uninteresting” rule that is sound but not “admissable”:

Γ ` e1 : τ

Γ ` if true then e1 else e2 : τ

We’ll study ways to give one term many types (“polymorphism”).

Fact: The version of STλC with explicit argument types (λx : τ . e)

has no polymorphism:

If Γ ` e : τ1 and Γ ` e : τ2, then τ1 = τ2.

Fact: Even without explicit types, many “reuse patterns” do not

type-check. Example: (λf. (f 0, f true))(λx. (x, x))
(evaluates to ((0, 0), (true, true))).

Dan Grossman CSE505 Fall 2008, Lecture 11 11

'

&

$

%

My least favorite PL word

Polymorphism means many things. . .

• Ad hoc polymorphism: e1 + e2 in SML<C<Java<C++

• Ad hoc, cont’d: Maybe e1 and e2 can have different run-time

types and we choose the + based on them

• Parametric polymorphism: e.g., Γ ` λx. x : ∀α.α → α or with

explicit types: Γ ` Λα. λx : α. x : ∀α.α → α

(which “compiles” i.e. “erases” to λx. x)

• Subtype polymorphism: new Vector().add(new C()) is legal

Java because new C() has types Object and C

. . . and nothing.

(I prefer “static overloading” “dynamic dispatch” “type abstraction”

and “subtyping”)

Dan Grossman CSE505 Fall 2008, Lecture 11 12

'

&

$

%

Our plan

• Starting today: Subtyping, preferably without coercions

• Then: Parametric polymorphism (∀) and maybe first-class ADTs

(∃) and recursive types (µ).

(All use type variables (α).)

• Even later: Dynamic-dispatch, inheritance vs. subtyping, etc.

(Concepts in OO programming)

Today’s Motto: Subtyping is not a matter of opinion!

Dan Grossman CSE505 Fall 2008, Lecture 11 13

'

&

$

%

Record types
We’ll use records to motivate subtyping:

e ::= . . . | {l1 = e1, . . . , ln = en} | e.l
τ ::= . . . | {l1 : τ1, . . . , ln : τn}
v ::= . . . | {l1 = v1, . . . , ln = vn}

ei → e′
i

{l1 = v1, . . . , li−1 = vi−1, li = ei, . . . , ln = en}
→ {l1 = v1, . . . , li−1 = vi−1, li = e′

i, . . . , ln = en}

{l1 = v1, . . . , ln = vn}.li → vi

Γ ` e1 : τ1 . . . Γ ` en : τn labels distinct

Γ ` {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn}

Γ ` e : {l1 : τ1, . . . , ln : τn} 1 ≤ i ≤ n

Γ ` e.li : τi

Dan Grossman CSE505 Fall 2008, Lecture 11 14

'

&

$

%

Should this typecheck?

(λx : {l1:int, l2:int}. x.l1 + x.l2){l1=3, l2=4, l3=5}

Right now, it doesn’t.

Our operational semantics won’t get stuck.

Suggests width subtyping :

τ1 ≤ τ2

{l1:τ1, . . . , ln:τn, l:τ} ≤ {l1:τ1, . . . , ln:τn}

And one one new type-checking rule: Subsumption

Γ ` e : τ ′ τ ′ ≤ τ

Γ ` e : τ

Dan Grossman CSE505 Fall 2008, Lecture 11 15

'

&

$

%

Permutation

Our semantics for projection doesn’t care about position...

So why not let {l1=3, l2=4} have type {l2:int, l1:int}?

{l1:τ1, . . . , li−1:τi−1, li:τi, . . . , ln:τn} ≤
{l1:τ1, . . . , li:τi, li−1:τi−1, . . . , ln:τn}

Example with width: Show

· ` {l1=7, l2=8, l3=9} : {l2:int, l1:int}.

It’s no longer clear what an (efficient, sound, complete) algorithm

should be. They sometimes exist and sometimes don’t. Here they do.

Dan Grossman CSE505 Fall 2008, Lecture 11 16

'

&

$

%

Transitivity

Subtyping is always transitive. We can add a rule for that:

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

Or just use the subsumption rule multiple times.

Or both.

In any case, type-checking is no longer syntax-directed: Given

Γ ` e : τ1, there may be 0, 1, or many ways to show Γ ` e : τ2.

So we could (hopefully) define an algorithm and prove it succeeds

exactly when there exists a derivation.

Dan Grossman CSE505 Fall 2008, Lecture 11 17

'

&

$

%

Digression: Efficiency

With our semantics, width and permutation subtyping make perfect

sense.

But it would be nice to compile e.l down to:

1. evaluate e to a record stored at an address a

2. load a into a register r1

3. load field l from a fixed offset (e.g., 4) into r2

Many type systems are engineered to make this easy for compiler

writers.

Makes restrictions seem odd if you do not know techniques for

implementing high-level languages. (CSE501)

Dan Grossman CSE505 Fall 2008, Lecture 11 18

'

&

$

%

Digression continued

With width subtyping, the strategy is easy. (No problem.)

With permutation subtyping, it’s easy but have to “alphabetize”.

With both, it’s not easy. . .

f1 : {l1 : int} → int f2 : {l2 : int} → int

x1 = {l1 = 0, l2 = 0} x2 = {l2 = 0, l3 = 0}
f1(x1) f2(x1) f2(x2)

Can use dictionary-passing (look up offset at run-time) and maybe

optimize away (some) lookups.

Named types can avoid this, but make code less flexible.

Dan Grossman CSE505 Fall 2008, Lecture 11 19

'

&

$

%

Depth Subtyping

With just records of ints, we miss another opportunity:

(λx : {l1:{l3:int}, l2:int}. x.l1.l3 + x.l2)
{l1={l3 = 3, l4 = 9}, l2=4}

Again, does not type-check but does not get stuck.

τi ≤ τ ′
i

{l1:τ1, . . . , li:τi, . . . , ln:τn} ≤ {l1:τ1, . . . , li:τ ′
i , . . . , ln:τn}

(With permutation subtyping could just allow depth on left-most field)

Soundness of this rule depends crucially on fields being immutable.

(Depth subtyping is unsound in the presence of mutation.)

• Trade-off between power (mutation) and sound expressiveness

(depth subtyping)

Dan Grossman CSE505 Fall 2008, Lecture 11 20

'

&

$

%

Function subtyping

Given our rich subtyping on records, how do we extend it to other

types, namely τ1 → τ2. For example, with width subtyping we’d like

int → {l1:int, l2:int} ≤ int → {l1:int}.

???

τ1 → τ2 ≤ τ3 → τ4

For a function to have type τ3 → τ4 it must return something of type

τ4 (including subtypes) whenever given something of type τ3

(including subtypes). A function assuming less than τ3 will do, but

not one assuming more.

Dan Grossman CSE505 Fall 2008, Lecture 11 21

'

&

$

%

Function subtyping, cont’d

τ3 ≤ τ1 τ2 ≤ τ4

τ1 → τ2 ≤ τ3 → τ4

Also want:
τ ≤ τ

Example: λx : {l1:int, l2:int}. {l1 = x.l2, l2 = x.l1} can have

type {l1:int, l2:int, l3:int} → {l1:int}
but not {l1:int} → {l1:int}.

We say function types are contravariant in their argument and

covariant in their result.

We say function types are contravariant in their argument with our

eyes closed, on one foot, IN OUR SLEEP, and we never let anybody

tell us otherwise. Ever.

(Depth subtyping means immutable records are covariant in their

fields.)

Dan Grossman CSE505 Fall 2008, Lecture 11 22

'

&

$

%

Summary of subtyping additions

Γ ` e : τ
Γ ` e : τ ′ τ ′ ≤ τ

Γ ` e : τ

τ1 ≤ τ2 τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3 τ ≤ τ

{l1:τ1, . . . , ln:τn, l:τ} ≤ {l1:τ1, . . . , ln:τn}

{l1:τ1, . . . , li−1:τi−1, li:τi, . . . , ln:τn} ≤
{l1:τ1, . . . , li:τi, li−1:τi−1, . . . , ln:τn}

τi ≤ τ ′
i

{l1:τ1, . . . , li:τi, . . . , ln:τn} ≤ {l1:τ1, . . . , li:τ
′
i , . . . , ln:τn}

τ3 ≤ τ1 τ2 ≤ τ4

τ1 → τ2 ≤ τ3 → τ4

(For other types, e.g., sums or pairs, would have more rules.)

Dan Grossman CSE505 Fall 2008, Lecture 11 23

'

&

$

%

Maintaining soundness

Our Preservation and Progress Lemmas still work in the presence of

subsumption. (So in theory, any subtyping mistakes would be caught

when trying to prove soundness!)

In fact, it seems too easy: induction on typing derivations makes the

subsumption case easy:

• Progress: One new case if typing derivation · ` e : τ ends with

subsumption. Then · ` e : τ ′ via a shorter derivation, so by

induction a value or takes a step.

• Preservation: One new case if typing derivation · ` e : τ ends

with subsumption. Then · ` e : τ ′ via a shorter derivation, so by

induction if e → e′ then · ` e′ : τ ′. So use subsumption to

derive · ` e : τ .

Hmm...

Dan Grossman CSE505 Fall 2008, Lecture 11 24

'

&

$

%

Ah, Canonical Forms

That’s because Canonical Forms is where the action is:

• If · ` v : {l1:τ1, . . . , ln:τn}, then v is a record with fields

l1, . . . , ln.

• If · ` v : τ1 → τ2, then v is a function.

Have to use induction on the typing derivation (may end with many

subsumptions) and induction on the subtyping derivation (e.g., “going

up the derivation” only adds fields)

• Canonical Forms is typically trivial without subtyping; now it

requires some work.

Dan Grossman CSE505 Fall 2008, Lecture 11 25

