
CSE505, Lecture 5 Supplement, Fall 2007
Dan Grossman

In class we sketched several proofs but Dan’s handwriting is bad and there were probably typos as we went
along. Here are the proofs more carefully laid out, as one might do on a homework assignment. There may
still be bugs; corrections are welcome.

Theorem: H ; e ∗ 2 ⇓ c if and only if H ; e + e ⇓ c.
Proof: (Does not use induction)

• First assume H ; e ∗ 2 ⇓ c and show H ; e + e ⇓ c. Any derivation of H ; e ∗ 2 ⇓ c must end with the
mult rule, which means there must exist derivations of H ; e ⇓ c′ and H ; 2 ⇓ 2, and c must be 2c′.
That is, there must be a derivation that looks like this:

...
H ; e ⇓ c′ H ; 2 ⇓ 2

H ; e ∗ 2 ⇓ 2c′

So given that there exists a derivation of H ; e ⇓ c′, we can use add to derive:

H ; e ⇓ c′ H ; e ⇓ c′

H ; e + e ⇓ c′+c′

Math provides c′+c′ = 2c′, so the conclusion of this derivation is what we need.

• Now assume H ; e + e ⇓ c and show H ; e ∗ 2 ⇓ c. Any derivation of H ; e + e ⇓ c must end with the
add rule, which means there exists a derivation that looks like this (where c = c1+c2):

...
H ; e ⇓ c1

...
H ; e ⇓ c2

H ; e + e ⇓ c1+c2

In fact, we earlier proved determinacy (there is at most one c such that H ; e ⇓ c), so the derivation
must have this form (where c = c1+c1):

...
H ; e ⇓ c1

...
H ; e ⇓ c1

H ; e + e ⇓ c1+c1

So given that there exists a derivation of H ; e ⇓ c1, we can use mult to derive:

H ; e ⇓ c1
H ; 2 ⇓ 2

H ; e ∗ 2 ⇓ 2c1

Math provides c1+c1 = 2c1, so the conclusion of this derivation is what we need.
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C ::= [·] | C + e | e + C | C ∗ e | e ∗ C

Formal definition of “filling the hole”:

([·])[e] = e
(C + e1)[e] = C[e] + e1

(e1 + C)[e] = e1 + C[e]
(C ∗ e1)[e] = C[e] ∗ e1

(e1 ∗ C)[e] = e1 ∗ C[e]

Theorem: H ; C[e ∗ 2] ⇓ c if and only if H ; C[e + e] ⇓ c.
Proof: By induction on (the height of) the structure of C:

• If the height is 1, then C is [·], so C[e ∗ 2] = e ∗ 2 and C[e + e] = e + e. So the previous theorem is
exactly what we need.

• If the height is greater than 1, then C has one of four forms:

– If C is C ′ + e′ for some C ′ and e′, then C[e ∗ 2] is C ′[e ∗ 2] + e′ and C[e + e] is C ′[e + e] + e′. Since
C ′ is shorter than C, induction ensures that for any constant c′, H ; C ′[e ∗ 2] ⇓ c′ if and only if
H ; C ′[e + e] ⇓ c′.
Assume H ; C ′[e ∗ 2] + e′ ⇓ c and show H ; C ′[e + e] + e′ ⇓ c: Any derivation of H ; C ′[e ∗ 2] + e′ ⇓ c
must end with add, i.e., it looks like this (where c = c′+c′′):

...
H ; C ′[e ∗ 2] ⇓ c′

...
H ; e′ ⇓ c′′

H ; C ′[e ∗ 2] + e′ ⇓ c

As argued above, the existence of a derivation of H ; C ′[e ∗ 2] ⇓ c′ ensures the existence of a
derivation of H ; C ′[e + e] ⇓ c′. So using add and the existence of a derivation of H ; e′ ⇓ c′′, we
can derive:

H ; C ′[e + e] ⇓ c′ H ; e′ ⇓ c′′

H ; C ′[e + e] + e′ ⇓ c

Now assume H ; C ′[e + e] + e′ ⇓ c and show H ; C ′[e ∗ 2] + e′ ⇓ c: Any derivation of H ; C ′[e + e] + e′ ⇓ c
must end with add, i.e., it looks like this (where c = c′+c′′):

...
H ; C ′[e + e] ⇓ c′

...
H ; e′ ⇓ c′′

H ; C ′[e + e] + e′ ⇓ c

As argued above, the existence of a derivation of H ; C ′[e + e] ⇓ c′ ensures the existence of a
derivation of H ; C ′[e ∗ 2] ⇓ c′. So using add and the existence of a derivation of H ; e′ ⇓ c′′, we
can derive:

H ; C ′[e ∗ 2] ⇓ c′ H ; e′ ⇓ c′′

H ; C ′[e ∗ 2] + e′ ⇓ c

– The other 3 cases are similar. (Try them out.)
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Theorem: Informally, the statement-sequence operator is associative. Formally:

(a) For all n, if H ; s1; (s2; s3) →n H ′ ; skip then there exist H ′ and n′ such that H ; (s1; s2); s3 →n′
H ′′ ; skip

and H ′′(ans) = H ′(ans).

(b) If for all n there exist H ′ and s′ such that H ; s1; (s2; s3) →n H ′ ; s′, then for all n there exist H ′′

and s′′ such that H ; (s1; s2); s3 →n H ′′ ; s′′.

Lemma: For all n, if H ; s1; (s2; s3) →n H ′ ; s′, then either (1) s′ has the form s′1; (s2; s3) and
H ; (s1; s2); s3 →n H ′ ; (s′1; s2); s3 or (2) H ; (s1; s2); s3 →n H ′ ; s′.

Lemma implies theorem: It’s stronger because if s′ is skip, then only (2) applies and we have H ′′ = H ′

and n′ = n.
Proof of the lemma: By induction on n. For the base case n = 0, so (1) holds with s′1 = s1. For

the inductive case n > 0, so H ; s1; (s2; s3) →n H ′ ; s′, which means H ; s1; (s2; s3) →n−1 H ′′ ; s′′

and H ′′ ; s′′ → H ′ ; s′ for some H ′′ and s′′. So by induction either (1) s′′ has the form s′′1 ; (s2; s3) and
H ; (s1; s2); s3 →n−1 H ′′ ; (s′′1 ; s2); s3 or (2) H ; (s1; s2); s3 →n−1 H ′′ ; s′′.

If (1), then the derivation of H ′′ ; s′′ → H ′ ; s′ ends with either Seq1 or Seq2. If Seq1, then H ′′ is H ′,
s′′1 is skip and s′ is s2; s3. Furthermore, we can derive:

H ′′ ; skip; s2 → H ′′ ; s2

H ′′ ; (skip; s2); s3 → H ′′ ; s2; s3

So (2) holds. If Seq2, then the derivation of H ′′ ; s′′ → H ′ ; s′ must have the form:

H ′′ ; s′′1 → H ′ ; s′1
H ′′ ; s′′1 ; (s2; s3) → H ′ ; s′1; (s2; s3)

So there must be a derivation of H ′′ ; s′′1 → H ′ ; s′1. So we can derive:

H ′′ ; s′′1 → H ′ ; s′1
H ′′ ; s′′1 ; s2 → H ′ ; s′1; s2

H ′′ ; (s′′1 ; s2); s3 → H ′ ; (s′1; s2); s3

So (1) holds.
If (2), then H ′′ ; s′′ → H ′ ; s′ ensures H ; (s1; s2); s3 → H ′ ; s′, so (2) holds.
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Theorem: The two semantics below are equivalent, i.e., H ; e ⇓ c if and only if H; e →∗ c.

const

H ; c ⇓ c

var

H ; x ⇓ H(x)

add
H ; e1 ⇓ c1 H ; e2 ⇓ c2

H ; e1 + e2 ⇓ c1+c2

svar

H; x → H(x)

sadd

H; c1 + c2 → c1+c2

sleft
H; e1 → e′1

H; e1 + e2 → e′1 + e2

sright
H; e2 → e′2

H; e1 + e2 → e1 + e′2

Proof: We prove the two directions separately.
First assume H ; e ⇓ c; show ∃n. H; e →n c. By induction on the height h of derivation of H ; e ⇓ c:

• h = 1: Then the derivation must end with const or var. For const, e is c and trivially H; e →0 c.
For var, e is some x where H(x) = c, so using svar, H; e →1 c.

• h > 1: Then the derivation must end with add, so e is some e1 +e2 where H ; e1 ⇓ c1, H ; e2 ⇓ c2, and
c is c1+c2. By induction ∃n1, n2. H; e1 →n1 c1 and H; e2 →n2 c2. Therefore, using the lemma below,
H; e1 + e2 →n1 c1 + e2 and H; c1 + e2 →n2 c1 + c2, so add lets us derive H; e1 + e2 →n1+n2+1 c.

Lemma: If H; e →n e′, then H; e1 + e →n e1 + e′ and H; e + e2 →n e′ + e2.
Proof: By induction on n. If n = 0, the result is trivial because e = e1 = e2. If n > 0, then there

exists some e′′ such that H; e →n−1 e′′ and H; e′′ →1 e′. So by induction H; e1 + e →n−1 e1 + e′′ and
H; e + e2 →n−1 e′′ + e2. So using sleft and sright respectively, H; e1 + e →n e1 + e′ and H; e + e2 →n e′ + e2.

Now assume ∃n. H; e →n c; show H ; e ⇓ c. By induction on n:

• n = 0: e is c and const lets us derive H ; c ⇓ c.

• n > 0: So ∃e′. H; e → e′ and H; e′ →n−1 c. By induction H ; e′ ⇓ c. So this lemma suffices: If
H; e → e′ and H ; e′ ⇓ c, then H ; e ⇓ c. Prove the lemma by induction on height h of derivation of
H; e → e′:

– h = 1: Then the derivation ends with svar or sadd. For svar, e is some x and e′ = H(x) = c.
So with var we can derive H ; x ⇓ H(x), i.e., H ; e ⇓ c. For sadd, e is some c1 + c2 and
e′ = c = c1+c2. Wo with add, we can derive H ; c1 + c2 ⇓ c1+c2, i.e., H ; e ⇓ c.

– h > 1: Then the derivation ends with sleft or sright. For sleft, the assumed derivations ends
like this:

H; e1 → e′1
H; e1 + e2 → e′1 + e2

H ; e′1 ⇓ c1 H ; e2 ⇓ c2

H ; e′1 + e2 ⇓ c1+c2

Using H; e1 → e′1, H ; e′1 ⇓ c1, and the induction hypothesis, H ; e1 ⇓ c1. Using this fact,
H ; e2 ⇓ c2, and add, we can derive H ; e1 + e2 ⇓ c1+c2.
For sright, the assumed derivations ends like this:

H; e2 → e′2
H; e1 + e2 → e1 + e′2

H ; e1 ⇓ c1 H ; e′2 ⇓ c2

H ; e1 + e′2 ⇓ c1+c2

Using H; e2 → e′2, H ; e′2 ⇓ c2, and the induction hypothesis, H ; e2 ⇓ c2. Using this fact,
H ; e1 ⇓ c1, and add, we can derive H ; e1 + e2 ⇓ c1+c2.
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