Where are we

Today is IMP’s last day (hooray!). Done:

- Abstract Syntax
- Operational Semantics (large-step and small-step)
- “Denotational” Semantics
- Semantic properties of (sets of) programs

Today:

- Packet-filter languages and other examples
- Equivalence of programs in a semantics
- Equivalence of different semantics

Next time: Local variables, lambda-calculus
Packet Filters

Almost everything I know about packet filters:

• Some bits come in off the wire
• Some application(s) want the “packet” and some do not (e.g., port number)
• For safety, only the O/S can access the wire.
• For extensibility, only an application can accept/reject a packet.

Conventional solution goes to user-space for every packet and app that wants (any) packets.

Faster solution: Run app-written filters in kernel-space.
What we need

Now the O/S writer is defining the packet-filter language!

Properties we wish of (untrusted) filters:

1. Don’t corrupt kernel data structures
2. Terminate (within a time bound)
3. Run fast (the whole point)

Should we download some C/assembly code? (Get 1 of 3.)

Should we make up a language and “hope” it has these properties?
Language-based approaches

1. Interpret a language.
 + clean operational semantics, + portable, - may be slow (+ filter-specific optimizations), - unusual interface

2. Translate a language into C/assembly.
 + clean denotational semantics, + employ existing optimizers, - upfront cost, - unusual interface

3. Require a conservative subset of C/assembly.
 + normal interface, - too conservative w/o help

IMP has taught us about (1) and (2) — we’ll get to (3)
A General Pattern

Packet filters move the code to the data rather than data to the code.

General reasons: performance, security, other?

Other examples:

• Query languages

• Active networks
Equivalence motivation

- Program equivalence (change program): code optimizer, code maintainer

- Semantics equivalence (change language): interpreter optimizer, language designer (prove properties for equivalent semantics with easier proof)

- Both: Great practice for strengthening inductive hypothesis (you will do this again in grad school)

Warning: Proofs are easy with the right semantics and lemmas

Note: Small-step often has harder proofs but models more interesting things
What is equivalence

Equivalence depends on *what is observable!*

- **Partial I/O equivalence** (if terminates, same *ans*)
 - `while 1 skip` equivalent to everything
 - not transitive
- **Total I/O** (same termination behavior, same *ans*)
- Total heap equivalence (at termination, all (almost all) variables have the same value)
- **Equivalence plus complexity bounds**
 - Is $O(2^n)$ really equivalent to $O(n)$?
- **Syntactic equivalence** (perhaps with renaming)
 - too strict to be interesting
Program Example: Strength Reduction

Motivation: Strength reduction a common compiler optimization due to architecture issues.

Theorem: $H ; e \times 2 \Downarrow c$ if and only if $H ; e + e \Downarrow c$.

Proof sketch: Just need “inversion of derivation” and math (hmm, no induction).
Program Example: Nested Strength Reduction

Theorem: If e' has a subexpression of the form $e \cdot 2$, then $H; e' \downarrow c'$ if and only if $H; e'' \downarrow c'$ where e'' is e' with $e \cdot 2$ replaced with $e + e$.

First some useful metanotation:

$$C ::= [\cdot] \mid C + e \mid e + C \mid C \cdot e \mid e \cdot C$$

$C[e]$ is “C with e in the hole”.

So: If $(e_1 = C[e \cdot 2]$ and $e_2 = C[e + e])$, then $(H; e_1 \downarrow c'$ if and only if $H; e_2 \downarrow c'$).

Proof sketch: By induction on structure ("syntax height") of C.
Small-step program equivalence

Theorem and proof significantly simplified by:

- Determinism
- Termination
- Large-step semantics

IMP statements have only determinism.

Theorem: The statement-sequence operator is associative. That is,

(a) For all \(n \), if \(H ; s_1; (s_2; s_3) \rightarrow^n H' ; \text{skip} \) then there exist \(H'' \) and \(n' \) such that \(H ; (s_1; s_2); s_3 \rightarrow^{n'} H'' ; \text{skip} \) and \(H''(\text{ans}) = H'(\text{ans}) \).

(b) If for all \(n \) there exist \(H' \) and \(s' \) such that \(H ; s_1; (s_2; s_3) \rightarrow^n H' ; s' \), then for all \(n \) there exist \(H'' \) and \(s'' \) such that \(H ; (s_1; s_2); s_3 \rightarrow^n H'' ; s'' \).
Lemma: For all n, if $H ; s_1; (s_2; s_3) \rightarrow^n H' ; s'$, then either

1. s' has the form $s'_1; (s_2; s_3)$ and $H ; (s_1; s_2); s_3 \rightarrow^n H' ; (s'_1; s_2); s_3$

 or

2. $H ; (s_1; s_2); s_3 \rightarrow^n H' ; s'$.

Lemma implies theorem: It’s stronger because if s' is skip, then only (2) applies and we have $H'' = H'$ and $n' = n$.

Proof of lemma: Tedious (will post for the curious).
Language Equivalence Example

IMP w/o multiply:

<table>
<thead>
<tr>
<th>CONST</th>
<th>VAR</th>
<th>ADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H; c \downarrow c$</td>
<td>$H; x \downarrow H(x)$</td>
<td>$H; e_1 \downarrow c_1$ $H; e_2 \downarrow c_2$</td>
</tr>
</tbody>
</table>

IMP w/o multiply small-step:

<table>
<thead>
<tr>
<th>SVAR</th>
<th>SADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H; x \rightarrow H(x)$</td>
<td>$H; c_1 + c_2 \rightarrow c_1 + c_2$</td>
</tr>
</tbody>
</table>

SLEFT

<table>
<thead>
<tr>
<th>$H; e_1 \rightarrow e_1'$</th>
<th>$H; e_2 \rightarrow e_2'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H; e_1 + e_2 \rightarrow e_1' + e_2$</td>
<td>$H; e_1 + e_2 \rightarrow e_1 + e_2'$</td>
</tr>
</tbody>
</table>

Theorem: Semantics are equivalent, i.e., $H; e \downarrow c$ if and only if $H; e \rightarrow^* c$.

Proof: We prove the two directions separately.
Proof, part 1:

First assume $H; e \Downarrow c$; show $\exists n. H; e \rightarrow^n c$.

Lemma (prove it!): If $H; e \rightarrow^n e'$, then $H; e_1 + e \rightarrow^n e_1 + e'$
and $H; e + e_2 \rightarrow^n e' + e_2$. (Proof uses \texttt{sleft} and \texttt{sright}.)

Given the lemma, prove by induction on height h of derivation of $H; e \Downarrow c$:

- $h = 1$: Derivation is via \texttt{CONST} (so $H; e \rightarrow^0 c$) or
 \texttt{VAR} (so $H; e \rightarrow^1 c$).

- $h > 1$: Derivation ends with \texttt{ADD}, so e has the form $e_1 + e_2$,
 $H; e_1 \Downarrow c_1$, $H; e_2 \Downarrow c_2$, and c is $c_1 + c_2$.
 By induction $\exists n_1, n_2$. $H; e_1 \rightarrow^{n_1} c_1$ and $H; e_2 \rightarrow^{n_2} c_2$.
 So by our lemma $H; e_1 + e_2 \rightarrow^{n_1} c_1 + e_2$ and
 $H; c_1 + e_2 \rightarrow^{n_2} c_1 + c_2$.
 So \texttt{sadd} lets us derive $H; e_1 + e_2 \rightarrow^{n_1+n_2+1} c$.

Dan Grossman
CSE505 Fall 2007, Lecture 5
14
Proof, part 2:

Now assume $\exists n. \; H; e \rightarrow^n c$; show $H; e \downarrow c$. By induction on n:

- $n = 0$: e is c and \textsc{const} lets us derive $H; c \downarrow c$.
- $n > 0$: $\exists e'$. $H; e \rightarrow e'$ and $H; e' \rightarrow^{n-1} c$.

 By induction $H; e' \downarrow c$.

 So this lemma suffices: If $H; e \rightarrow e'$ and $H; e' \downarrow c$, then $H; e \downarrow c$.

 Prove the lemma by induction on height h of derivation of $H; e \rightarrow e'$:

 - $h = 1$: Derivation ends with \textsc{svar} (so $e' = c = H(x)$ and \textsc{var} gives $H; x \downarrow H(x)$) or with \textsc{sadd} (so e is some $c_1 + c_2$ and $e' = c = c_1 + c_2$ and \textsc{add} gives $H; c_1 + c_2 \downarrow c_1 + c_2$).

 - $h > 1$: Derivation ends with \textsc{sleft} or \textsc{sright} ...
Proof, part 2 continued:

If \(e \) has the form \(e_1 + e_2 \) and \(e' \) has the form \(e'_1 + e_2 \), then the assumed derivations end like this:

\[
\begin{align*}
H; e_1 & \rightarrow e'_1 \\
H; e_1 + e_2 & \rightarrow e'_1 + e_2
\end{align*}
\]

\[
\begin{align*}
H; e'_1 & \Downarrow c_1 \\
H; e'_1 + e_2 & \Downarrow c_1 + c_2
\end{align*}
\]

Using \(H; e_1 \rightarrow e'_1 \), \(H; e'_1 \Downarrow c_1 \), and the induction hypothesis, \(H; e_1 \Downarrow c_1 \). Using this fact, \(H; e_2 \Downarrow c_2 \), and ADD, we can derive \(H; e_1 + e_2 \Downarrow c_1 + c_2 \).

(If \(e \) has the form \(e_1 + e_2 \) and \(e' \) has the form \(e_1 + e'_2 \), the argument is analogous to the previous case (prove it!).)
Conclusions

• Equivalence is a subtle concept.

• Proofs “seem obvious” only when the definitions are right.

• Some other language-equivalence claims:
 Replace \texttt{WHILE} rule with

 \[
 \begin{array}{c}
 H ; e \Downarrow c \quad c \leq 0 \\
 \hline
 H ; \texttt{while } e \texttt{ s } \rightarrow H ; \texttt{skip}
 \end{array}
 \quad \begin{array}{c}
 H ; e \Downarrow c \quad c > 0 \\
 \hline
 H ; \texttt{while } e \texttt{ s } \rightarrow H ; s; \texttt{while } e \texttt{ s}
 \end{array}
 \]

 Theorem: Languages are equivalent. (True)

 Change syntax of heap and replace \texttt{ASSIGN} and \texttt{VAR} rules with

 \[
 \begin{array}{c}
 H ; x \Leftarrow e \rightarrow H, x \Leftarrow e ; \texttt{skip}
 \end{array}
 \quad \begin{array}{c}
 H ; H(x) \Downarrow c \\
 \hline
 H ; x \Downarrow c
 \end{array}
 \]

 Theorem: Languages are equivalent. (False)