
'

&

$

%

CSE 505: Concepts of Programming Languages

Dan Grossman

Fall 2007

Lecture 19

Summary and “Everything Else”

Dan Grossman CSE505 Fall 2007, Lecture 19 1

'

&

$

%

79.5 Minutes of PL left

• Review and highlights of what we did and did not do:

1. Semantics

2. Encodings

3. Language Features

4. Concurrency

5. Types

6. Metatheory

• What the WASP group is up to and its relation to 505

Actually, the field is at least half “language implementation” but

that’s 501 not 505. (If you want to know how compilers deal with

something, come ask me.)

Dan Grossman CSE505 Fall 2007, Lecture 19 2

'

&

$

%

Review of Basic Concepts

Semantics matters!

We must reason about what software does and does not do, if

implementations are correct, and if changes preserve meaning.

So we need a precise meaning for programs.

Do it once: Give a semantics for all programs in a language. (Infinite

number, so use induction for syntax and semantics)

Real languages are big, so build a smaller model. Key simplifications:

• Abstract syntax

• Omitted language features

Danger: not considering related features at once

Dan Grossman CSE505 Fall 2007, Lecture 19 3

'

&

$

%

Operational Semantics

An interpreter can use rewriting to transform a program state to

another one (or an immediate answer).

When our interpreter is written in the metalanguage of a judgment

with inference rules, we have an “operational semantics”.

This metalanguage is convenient (instantiating rule schemas),

especially for proofs (induction on derivation height).

Omitted: Automated checking of judgments and proofs.

• Proofs by hand are wrong.

• Proofs about ML programs are too hard.

• See Twelf, Coq, . . .

Dan Grossman CSE505 Fall 2007, Lecture 19 4

'

&

$

%

Denotational Semantics

A compiler can give semantics as translation plus semantics-of-target.

If the target-language and meta-language are math, this is

denotational semantics.

Can lead to elegant proofs, exploiting centuries of work, and treating

code as math is “the right thing to do”.

But building models is really hard!

Omitted: Denotation of while-loops (need recursion-theory),

denotation of lambda-calculus (maps of environments? can avoid

recursion in typed setting).

Meaning-preserving translation is compiler-correctness...

Dan Grossman CSE505 Fall 2007, Lecture 19 5

'

&

$

%

Rhodium in one slide

Again, compiler-correctness is meaning-preserving translation.

For optimization, source and target are same language.

If an optimization:

• is written in a restricted meta-language

• uses a trusted engine for computing what’s legal

• is connected to the semantics of the language

Then an automated theorem prover can show “once and for all” that

an optimization is correct (Sorin Lerner, now at UCSD).

Anna is writing a faster engine, specialized to the optimization (by

compiling instead of interpreting)

• A compiler is a partially evaluated interpreter.

Dan Grossman CSE505 Fall 2007, Lecture 19 6

'

&

$

%

Equivalence

With semantics plus “what is observable” we can determine

equivalence.

In security, often more is observable than PLs assume.

Sam: Compilers that remove dead assignments or O/Ses that

transparently swap data to disk can decrease security.

In the real world, semantics can (unfortunately) depend on

platform-specific features (endianness, screen size, ...)

Marius:

• Nonstandard type system to detect struct-layout assumptions.

• Small language extension to translate code for one data layout to

another (equivalently!).

• Testing coverage in the presence of configuration-option explosion.

Dan Grossman CSE505 Fall 2007, Lecture 19 7

'

&

$

%

Other Semantics

• Axiomatic Semantics: A program is a query-engine. Keywords:

weakest-preconditions, Hoare triples, A program means what

you can prove about it.

• Game Semantics: A program is its interaction with the context.

To “win”, it “produces an answer”. (Less mature idea; seems

useful for dealing with the all-important context.)

Useful?

• Standard ML has a small (few dozen pages) formal semantics.

• Caml has an implementation.

• Standards bodies write boat anchors.

• Some real-word successes, e.g., Wadler and XML queries, Manson

and Java Memory Model, ...

Dan Grossman CSE505 Fall 2007, Lecture 19 8

'

&

$

%

Encodings

Our small models aren’t so small if we can encode other features as

derived forms.

Example: pairs in lambda-calculus, triples as pairs, . . .

“Syntactic sugar” is a key concept in language-definition and

language-implementation.

But special-cases are important too.

• Example: if-then-else in Caml.

• I do not know how to answer this design question.

Omitted: Church numerals, equivalence proofs, etc.

Dan Grossman CSE505 Fall 2007, Lecture 19 9

'

&

$

%

Fancy encoding: Continuation-Passing Style

There is a smaller λ-calculus:

e ::= x | λx. e | e y | e (λx. e′) | e c

That is, the right-side of an application is always a value or variable

(i.e., computed in O(1) time and space).

CBV evaluation stays in this (sub)language!

So inductively we don’t need a stack (every decurried call is a tail-call)!

And there’s a translation from the full λ-calculus to this sublanguage!!

A term of type τ1 → τ2 translates to one of type

τ1 → (τ2 → τans) → τans , i.e., a “foo maker” becomes a λ that

(takes a λ that takes a “foo” and finishes-the-program) and

finishes-the-program.

At the end of the day, e and (translate(e))(λx. x) are equivalent.

Dan Grossman CSE505 Fall 2007, Lecture 19 10

'

&

$

%

More on Continuations

The definition of translate(e) is short but mind-bending.

It’s very related to the explicit stacks in lecture 10; instead of a list in

the metalanguage we have a list in the language (represented via

functions).

If our source language has letcc and throw, we can extend translate

very easily and they are O(1) operations!

This translation is important in theory and at the core of SML/NJ.

• Also advocated in many compiler “middle ends”

– “Compiling with continuations” (Appel 80s, Kennedy 07)

If I had one more week we would do continuations for real.

Dan Grossman CSE505 Fall 2007, Lecture 19 11

'

&

$

%

Language Features

We studied many features: assignment, loops, scope, higher-order

functions, tuples, records, variants, references, threads, objects,

constructors, multimethods, . . .

We demonstrated some good design principles:

• Bindings should permit systematic renaming (α-conversion)

• Constructs should be first-class

(permit abstraction and abbreviation using full power of language)

• Constructs have intro and elim forms

• Eager vs. lazy (evaluation order, thunking)

We saw datatypes and classes better support different flavors of

extensibility. Much work here a few years ago, but currently dormant.

Dan Grossman CSE505 Fall 2007, Lecture 19 12

'

&

$

%

More on first-class

We didn’t emphasize enough the convenience of first-class status: any

construct can be passed to a function, stored in a data structure, etc.

Example: We can apply functions to computed arguments (f(e) as

opposed to f(x)). But in YFL, can you:

• Compute the function e′(e)

• Pass arguments of any type (e.g., other functions)

• Compute argument lists (cf. Java, Scheme, ML)

• Pass operators (e.g., +)

• Pass projections (e.g., .l)

1st-class allows parameterization; every language has limits

Dan Grossman CSE505 Fall 2007, Lecture 19 13

'

&

$

%

Omitted feature: Arrays

An array is a pretty simple feature we just never bothered with:

• introduction form (make-array function of a length and an initial

value (or function for computing it))

• elimination forms (subscript and update), may get stuck (or cost

the economy billions if it’s C)

Why do languages have arrays and records?

• Arrays allow 1st-class lengths and index-expressions

• Records have fields with different types

Nice to have the vocabulary we need!

Dan Grossman CSE505 Fall 2007, Lecture 19 14

'

&

$

%

Omitted feature: Exceptions

Semantics are pretty easy:

• One approach: Use a stack of evaluation contexts; throw pops one

off

• Another approach: Compile away to sums (normal result or

exception result) and put a match around every expression.

Implementations can be even more clever than the first approach, but

that’s implementation.

Typing is also easy: An exception throw can have any type (types

describe the value produced by normal termination)

In ML, the type exn is the only extensible datatype (nobody knows all

the variants)

• Can be useful for more than exceptions, but you give up

exhaustiveness-checking

Dan Grossman CSE505 Fall 2007, Lecture 19 15

'

&

$

%

Omitted feature: Macros

We deemed syntax “uninteresting” only because the parsing problem is

solved.

• Grammars admitting fast automated parsers an amazing success

• Gives rigorous technical reasons to despise deviations

(e.g., typedef in C)

But syntax extensions (e.g., macros) are now understood as more than

textual substitution

• Always was (strings, comments, etc.)

• Macro hygiene (related to capture) crucial, rare, and sometimes

not what you want.

• Not a closed area

Dan Grossman CSE505 Fall 2007, Lecture 19 16

'

&

$

%

Omitted feature: Foreign-function calls

Language designers/implementors often guilty of “control the world

syndrome”.

Heterogeneity increasingly important and relying on byte-based I/O

throws away everything we have been doing across langugage

boundaries.

Jon is looking at a framework for high-level but fine-grained

interoperability.

Dan Grossman CSE505 Fall 2007, Lecture 19 17

'

&

$

%

Omitted feature: Unification

Some languages do search for you using unification

append([], X, X)

append(cons(H,T), X, cons(H,Y)) :- append(T, X, Y)

append(cons(1,cons(2,null)), cons(3,null), Z)

append(W, cons(4,null), cons(5,cons(4,null)))

• More than one rule can apply (leads to search)

• Must instantiate rules with same terms for same variables.

Sound familiar? Very close connection with our meta-language of

inference rules. Our “theory” can be a programming paradigm!

The Alchemy project adds probabilities.

Dan Grossman CSE505 Fall 2007, Lecture 19 18

'

&

$

%

More omitted features: Haskell coolness

Some functional languages (most notably Haskell) have call-by-need

semantics for function application.

Haskell is also purely functional, moving any effects (exceptions, I/O,

references) to a layer above using something called monads. So at the

core level, you know (f x)*2 and (f x)+(f x) are equivalent.

Haskell also has type classes which allow you to constrain type

variables via “interfaces”.

Dan Grossman CSE505 Fall 2007, Lecture 19 19

'

&

$

%

Omitted features summary

I’m sure there are more:

1. Arrays

2. Macros

3. Exceptions

4. Foreign-function calls

5. Unification

6. Lazy evaluation (another name for call-by-need)

7. Monads

8. Type classes

Dan Grossman CSE505 Fall 2007, Lecture 19 20

'

&

$

%

Concurrency

Feels like “more than just more languages features” because it changes

so many of your assumptions.

Omitted: Process calculi (e.g., π-caclulus) — “the lambda calculus of

concurrent and distributed programming”

The hot thing: software transactions (atomic : (unit->’a)->’a)

Kate: Formal operational semantics and equivalence proofs given a

very strict type system

Aaron (old): interaction with continuations

Aaron (new): multithreaded transactions

Laura & Matt: Using abortability for Concurrent ML with

then : (’a event) -> (’a -> ’b event) -> (’b event)

(adapt from Haskell to ML)

Ben: Use Petri Nets (?!) to check if lock-based code is atomic

Dan Grossman CSE505 Fall 2007, Lecture 19 21

'

&

$

%

Types

• A type system can prevent bad operations (so safe

implementations need not include run-time checks)

• I program fast in ML by relying on type-checking

• “Getting stuck” is undecidable so decidable type systems rule out

good programs (to be sound rather than complete)

– May need new language constructs (e.g., fix in STLC)

– May require code duplication (hence polymorphism)

– A balancing act to avoid the Pascal-array debacle

Safety = Preservation + Progress (an invariant is preserved and if

the invariant holds you’re not stuck) is a general phenomenon.

Omitted: effect systems (layer information on function types)

• Used in Kate & Ben’s atomicity work and Marius’ struct-layout

work.

Dan Grossman CSE505 Fall 2007, Lecture 19 22

'

&

$

%

Just an approximation

There are other approaches to describing/checking decidable

properties of programs:

• Dataflow analysis (plus: more convenient for flow-sensitive, minus:

less convenient for higher-order); see 501 (next year)

• Abstract interpretation (plus: defined very generally, minus:

defined very generally)

• Model-checking (a course in itself 2 years ago)

Zealots of each approach (including types) emphasize they’re more

general than the others.

Types as “abstract interpretation” example: (3) = int (4) = int

(+) = fun x,y. if x=int and y=int then int else fail

Typechecks if abstract-interpretation does not produce “fail”

Dan Grossman CSE505 Fall 2007, Lecture 19 23

'

&

$

%

Polymorphism

If every term has one simple type, you have to duplicate too much

code (can’t write a list-library).

Subtyping allows subsumption. A subtyping rule that makes a safe

language unsafe is wrong.

Type variables allow an incomparable amount of power. They also let

us encode strong-abstractions, the end-goal of modularity and security.

Ad-hoc polymorphism (static-overloading) saves some keystrokes.

Note: In C, casts (subsumptions) are often “correct” only under

certain architectural assumptions. Recall Marius’ work.

Dan Grossman CSE505 Fall 2007, Lecture 19 24

'

&

$

%

Inference

Real languages allow you to omit more type information than our

formal typed languages.

Inference is elegant for some languages, impossible for others.

• Not a closed area (e.g., Generalized Abstract Data Types)

But the error messages are often bad because a small error may cause

a type problem “far away”.

Ben’s “Seminal” uses search to find a “nearby” program that does

typecheck and show you the difference.

Dan Grossman CSE505 Fall 2007, Lecture 19 25

'

&

$

%

Metatheory

We studied many properties of our models, especially typed λ-calculi:

safety, termination, parametricity, erasure

Remember to be clear about what the question is!

Example: Erasure... Given the typed language, the untyped language,

and the erase meta-function, do erasure and evaluation commute?

Example: Subtyping decidable... Given a collection of inference rules

for ∆ τ̀1 ≤ τ2, does there exist an algorithm to decide (for all) ∆,

τ1 and τ2 whether a derivation of ∆ τ̀1 ≤ τ2 exists?

Dan Grossman CSE505 Fall 2007, Lecture 19 26

'

&

$

%

Last Slide

• Languages and models of them follow guiding principles

• Now you can’t say I didn’t show you continuation-passing style

• We can apply this stuff to make software better!!

Defining program behavior is a key obligation of computer science.

Proving programs do not do “bad things” (e.g., violate safety) is a

“simpler” undecidable problem.

• A necessary condition for modularity

• Hard work (subtle interactions demand careful reasoning)

• Fun (get to write compilers and prove theorems)

You might have a PL issue in the next 5 years... I’m in CSE556.

Dan Grossman CSE505 Fall 2007, Lecture 19 27

