
CSE 505, Fall 2007, Assignment 4
Due: Tuesday 27 November 2007, 5:00PM

Last updated: November 10

See also the associated code on the course website.

1. (References and Subtyping) Consider a simply-typed lambda-calculus including mutation (as defined
in homework 3), records, and subtyping (as defined in lecture 11). In other words, it has mutable
references and immutable records, plus all the subtyping rules considered in lecture. This “combined
language” has no subtyping rule for reference types yet (see below).

(a) Challenge Problem: Extend your type-safety proof from homework 3 to encompass this new
language (i.e., with records, subsumption, and the subtyping rules from lecture).

(b) Write down an inference rule allowing covariant subtyping for reference types. Show this rule is
unsound. (To show a rule is unsound, assume the language without the rule is sound (as proven
in the previous problem). Then give an example program, show that your example type-checks
using the rule, and that evaluating the program can get to a stuck state.)

(c) Write down an inference rule allowing contravariant subtyping for reference types. Show this rule
is unsound.

(d) Write down an inference rule allowing invariant subtyping for reference types. Invariant subtyping
means it must be covariant and contravariant. This rule is sound, but you do not have to show it.
However, show that this rule is not admissable (i.e., it allows programs to type-check that could
not type-check before). Keep in mind our language already has reflexive subtyping (so we can
already derive τ ≤ τ for all τ).

2. (System F and parametricity)

(a) Give 4 values v in System F such that:

• ·; · ` v : ∀α.(α ∗ α) → (α ∗ α)
• Each v is not equivalent to the other three (i.e., given the same arguments it may have a

different behavior).

For one of your 4 values, give a full typing derivation.

(b) Give 6 values v in Caml such that:

• v is a closed term of type ’a * ’a -> ’a * ’a (or a more general type).
• Each v is not totally equivalent to the other five.
• None perform input or output.

(c) Unsurprisingly, a Caml function of type ’a -> int -> unit can never “tell” if its first argument
is an int. Surprisingly, a Caml function of type ’a ref -> int ref -> unit can sometimes
“tell” if its first argument is an int ref, without using pointer-equality on references and without
using any kind of equality on expressions of type ’a. Write such a function. (This is tricky; feel
free to ask for hints. You can, and in fact need to, use comparison on integers.)

3. (Implementing Subtyping) You have been provided an interpreter and type-checker for the language
in homework 3, extended with tuples, explicit subsumption, and named types. The example program
factorial uses these new features, but it will not type-check until you implement subtype checking.
Language details:

• A program now begins with zero or more “type aliases” of the form type s = τ where type is a
keyword, s is an identifier, and τ is a type. A type alias makes s a legal type. As for subtyping,
s ≤ τ and τ ≤ s. You may assume without checking that a program’s type aliases have no cyclic
references (see the second challenge problem) and each alias defines a different type name.

1



• The type-checker does not allow implicit subsumption. However, if e has type τ and τ ≤ τ ′,
then the explicit subsumption (e : τ ′) has type τ ′. If τ is not a subtype of τ ′, then (e : τ ′)
should not typecheck.

• Tuple types are written t1 * t2 ... * tn. There is no syntax for tuple types with fewer than
2 components even though the interpreter and type-chcker support it.

• Similarly, tuple expressions are written (e1, e2, ..., en).

• To get a field of a tuple, use e.i where i is an integer and the fields are numbered left-to-right
starting with 1.

All you need to do is implement the subtype function in main.ml to support the following:

• A named type (i.e., type alias) is a subtype of what it aliases and vice-versa.

• Int is a subtype of Int.

• Reference types are invariant as in problem 1(d).

• Tuple types have width and depth subtyping.

• Function types have their usual contravariant argument and covariant result subtyping.

Note: The sample solution is 15 lines long. Pattern-matching on pairs of types helps keep things
concise as does using a couple functions defined in the List library.

Challenge Problems:

• Change typecheck to support implicit subsumption between type aliases and their definitions
(but still require explicit subsumption for all other subtyping).

• Extend your subtype-checker to be sound and always terminate even if the type aliases have
cycles in their definitions (e.g., the definition of s1 uses s2 and vice-versa; one-type cycles are also
a problem). Explain what subtyping you do and do not support in the presence of cycles.

4. (Strong Interfaces) This problem investigates several ways to enforce how clients use an interface. The
file stlc.ml provides a type-checker and interpreter for a simply-typed lambda-calculus. We intend to
use stlc.mli to enforce that the interpreter is never called with a program that does not type-check.
In other words, no client should be able to call interpret such that it raises RunTimeError. We will
call an approach “safe” if it achieves this goal.

In problems (a)–(d), you will implement 4 different safe approaches, none of which require more than
2–3 lines of code in stlc.ml. (Do not change stlc.mli.) Ignore stlc2.mli and stlc2.ml until part
(e).

(a) Implement interpret1 such that it typechecks its argument, raises TypeError if it does not
typecheck, and calls interpret if it does typecheck. This is safe, but requires typechecking a
program every time we run it.

(b) Implement typecheck2 and interpret2 such that typecheck2 raises TypeError if its argument
does not typecheck, otherwise it adds its argument to some mutable state holding a collection
of expressions that typecheck. Then interpret2 should call interpret only if its argument is
pointer-equal (Caml’s == operator) to an expression in the mutable state typecheck2 adds to.
This is safe, but requires state and can waste memory.

(c) Implement typecheck3 to raise TypeError if its argument does not typecheck, else return a thunk
that when called interprets the program that typechecked. This is safe.

(d) Implement typecheck4 to raise TypeError if its argument does not typecheck, else return its
argument. Implement interpret4 to behave just like interpret. This is safe; look at stlc.mli
to see why!

2



(e) Copy your solutions into stlc2.ml. Use diff to see that stlc2.ml and stlc2.mli have one
small but important change; part of the abstract syntax is mutable.
For each of the four approaches above, decide if they are safe for stlc2. If an approach is not safe,
put code in adversary.ml that will cause Stlc.RunTimeError to be raised. (See adversary.ml
for details about where to put this code.)

What to turn in:

• Hard-copy (written or typed) answers to problems 1 and 2.

• Caml source code in main.ml, stlc2.ml, and adversary.ml for problems 3 and 4.

Email your source code to Matthew as firstname-lastname-hw4.tgz or firstname-lastname-hw4.zip.
The code should untar/unzip into a directory called firstname-lastname-hw4. Hard copy solutions should
be put in Matthew’s grad student mailbox or given to him directly.

3


