CSE 505: Concepts of Programming Languages

Dan Grossman
Fall 2006
Lecture 9— More ST\textbackslash\textit{lambda}C Extensions; Notes on Termination
Outline

• Continue extending ST\(\lambda C\) – data structures, recursion
• Discussion of “anonymous” types
• Consider termination informally
• Next time: Curry-Howard Isomorphism, Evaluation Contexts, Abstract Machines
Review

\[e ::= \lambda x.\ e \mid x \mid e\ e \mid c \]
\[v ::= \lambda x.\ e \mid c \]

\[\tau ::= \text{int} \mid \tau \rightarrow \tau \]
\[\Gamma ::= \cdot \mid \Gamma, x : \tau \]

\[
\begin{array}{c}
(\lambda x.\ e)\ v \rightarrow e[v/x] \\
e_1 \rightarrow e'_1 \\
e_2 \rightarrow e'_2 \\
e_1\ e_2 \rightarrow e'_1\ e_2 \\
v\ e_2 \rightarrow v\ e'_2
\end{array}
\]

\[e[e'/x] : \text{capture-avoiding substitution of } e' \text{ for free } x \text{ in } e \]

\[
\begin{array}{c}
\Gamma \vdash c : \text{int} \\
\Gamma \vdash x : \Gamma(x) \\
\Gamma, x : \tau_1 \vdash e : \tau_2 \\
\Gamma \vdash \lambda x.\ e : \tau_1 \rightarrow \tau_2 \\
\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \\
\Gamma \vdash e_2 : \tau_2
\end{array}
\]

\[\Gamma \vdash e_1\ e_2 : \tau_1 \]

Preservation: If \(\cdot \vdash e : \tau \) and \(e \rightarrow e' \), then \(\cdot \vdash e' : \tau \).

Progress: If \(\cdot \vdash e : \tau \), then \(e \) is a value or \(\exists e' \) such that \(e \rightarrow e' \).
Pairs (CBV, left-right)

\[
e ::= \ldots | (e, e) | e.1 | e.2
\]

\[
v ::= \ldots | (v, v)
\]

\[
\tau ::= \ldots | \tau \ast \tau
\]

\[
\frac{e_1 \rightarrow e'_1}{(e_1, e_2) \rightarrow (e'_1, e_2)} \hspace{1cm} \frac{e_2 \rightarrow e'_2}{(v_1, e_2) \rightarrow (v_1, e'_2)}
\]

\[
\frac{e \rightarrow e'}{e.1 \rightarrow e'.1} \hspace{1cm} \frac{e \rightarrow e'}{e.2 \rightarrow e'.2}
\]

\[
\frac{(v_1, v_2).1 \rightarrow v_1}{(v_1, v_2).2 \rightarrow v_2}
\]

Small-step can be a pain (more concise notation next lecture)
Pairs continued

\[\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2 \]
\[\Gamma \vdash (e_1, e_2) : \tau_1 \ast \tau_2 \]

\[\Gamma \vdash e : \tau_1 \ast \tau_2 \]
\[\Gamma \vdash e.1 : \tau_1 \]
\[\Gamma \vdash e.2 : \tau_2 \]

Canonical Forms: If \(\cdot \vdash v : \tau_1 \ast \tau_2 \), then \(v \) has the form \((v_1, v_2)\).

Progress: New cases using C.F. are \(v.1 \) and \(v.2 \).

Preservation: For primitive reductions, inversion gives the result \textit{directly}.
Records

Records seem like pairs with *named fields*

\[
e ::= \ldots \mid \{ l_1 = e_1; \ldots; l_n = e_n \} \mid e.l
\]

\[
\tau ::= \ldots \mid \{ l_1 : \tau_1; \ldots; l_n : \tau_n \}
\]

\[
v ::= \ldots \mid \{ l_1 = v_1; \ldots; l_n = v_n \}
\]

Fields do *not* α-convert.

Names might let us reorder fields, e.g.,

\[
\cdot \vdash \{ l_1 = 42; l_2 = \text{true} \} : \{ l_2 : \text{bool}; l_1 : \text{int}\}.
\]

Nothing wrong with this, but many languages disallow it. (Why?
Run-time efficiency and/or type inference)

(Caml has only *named* record types with *disjoint* fields.)

More on this when we study *subtyping*
Sums

What about ML-style datatypes:

\texttt{type t = A | B of int | C of int*t}

1. Tagged variants (i.e., discriminate unions)
2. Recursive types
3. Type constructors (e.g., type 'a mylist = ...)
4. Names the type

Today we'll model just (1) with (anonymous) sum types...
Sum syntax and overview

\[e ::= \ldots | A(e) | B(e) | \text{match } e \text{ with } A x. \ e | B x. \ e \]

\[v ::= \ldots | A(v) | B(v) \]

\[\tau ::= \ldots | \tau_1 + \tau_2 \]

- Only two constructors: \(A \) and \(B \)
- All values of any sum type built from these constructors
- So \(A(e) \) can have any sum type allowed by \(e \)'s type
- No need to declare sum types in advance
- Like functions, will “guess the type” in our rules
Sum semantics

\[
\text{match } A(v) \text{ with } Ax.\ e_1 \mid By.\ e_2 \rightarrow e_1[v/x]
\]

\[
\text{match } B(v) \text{ with } Ax.\ e_1 \mid By.\ e_2 \rightarrow e_2[v/y]
\]

\[
\frac{e \rightarrow e'}{A(e) \rightarrow A(e')} \quad \frac{e \rightarrow e'}{B(e) \rightarrow B(e')}
\]

\[
\text{match } e \text{ with } Ax.\ e_1 \mid By.\ e_2 \rightarrow \text{match } e' \text{ with } Ax.\ e_1 \mid By.\ e_2
\]

match has binding occurrences, just like pattern-matching.

(Definition of substitution must avoid capture, just like functions.)
What is going on

Feel free to think about *tagged values* in your head:

- A tagged value is a pair of a tag (A or B, or 0 or 1 if you prefer) and the value
- A match checks the tag and binds the variable to the value

This much is just like Caml in lecture 1 and related to homework 2.

Sums in other guises:

- C: use an *enum* and a *union*
 - More space than ML, but supports in-place mutation
- OOP: use an abstract superclass and subclasses
Sum Type-checking

Inference version (not trivial to infer; can require annotations)

\[\Gamma \vdash e : \tau_1 \quad \Gamma \vdash A(e) : \tau_1 + \tau_2\]
\[\Gamma \vdash e : \tau_2 \quad \Gamma \vdash B(e) : \tau_1 + \tau_2\]

\[\Gamma \vdash e : \tau_1 + \tau_2 \quad \Gamma, x:\tau_1 \vdash e_1 : \tau \quad \Gamma, y:\tau_2 \vdash e_2 : \tau\]
\[\Gamma \vdash \text{match } e \text{ with } Ax. \ e_1 | By. \ e_2 : \tau\]

Key ideas:

- For constructor-uses, “other side can be anything”
- For match, both sides need same type since don’t know which branch will be taken, just like an if.

Can encode booleans with sums. E.g., \textbf{bool} = \textbf{int} + \textbf{int}, \texttt{true} = A(0), \texttt{false} = B(0).
Type Safety

Canonical Forms: If $\cdot \vdash v : \tau_1 + \tau_2$, then either v has the form $A(v_1)$ and $\cdot \vdash v_1 : \tau_1$ or the form $A(v_1)$ and $\cdot \vdash v_1 : \tau_2$.

The rest is induction and substitution...
Pairs vs. sums

- You need both in your language
 - With only pairs, you clumsily use dummy values, waste space, and rely on unchecked tagging conventions
 - Example: replace `int + (int → int)` with `int * (int * (int → int))`

- “logical duals” (as we’ll see soon and the typing rules show)
 - To make a $\tau_1 * \tau_2$ you need a τ_1 and a τ_2.
 - To make a $\tau_1 + \tau_2$ you need a τ_1 or a τ_2.
 - Given a $\tau_1 * \tau_2$, you can get a τ_1 or a τ_2
 (or both; your “choice”).
 - Given a $\tau_1 + \tau_2$, you must be prepared for either a τ_1 or τ_2
 (the value’s “choice”).
Base Types, in general

What about floats, strings, enums, . . . ? Could add them all or do something more general . . .

Parameterize our language/semantics by a collection of base types \((b_1, \ldots, b_n)\) and primitives \((c_1 : \tau_1, \ldots, c_n : \tau_n)\).

Examples: \texttt{concat : string\rightarrow string\rightarrow string}
\texttt{toInt : float\rightarrow int}
\texttt{“hello” : string}

For each primitive, assume if applied to values of the right types it produces a value of the right type.

Together the types and assumed steps tell us how to type-check and evaluate \(c_i \ v_1 \ldots v_n\) where \(c_i\) is a primitive.

We can prove soundness 	extit{once and for all} given the assumptions.
Recursion

We won’t prove it, but every extension so far preserves termination. A Turing-complete language needs some sort of loop. What we add won’t be encodable in $ST\lambda C$.

E.g., let rec $f \ x = e$

Do typed recursive functions need to be bound to variables or can they be anonymous?

In Caml, you need variables, but it’s unnecessary:

$$e ::= \dotsc \mid \text{fix } e$$

$$e \rightarrow e'$$

$$\text{fix } e \rightarrow \text{fix } e'$$

$$\text{fix } \lambda x. \ e \rightarrow e[\text{fix } \lambda x. \ e/x]$$
Using fix

It works just like let rec, e.g.,

\[\text{fix } \lambda f. \lambda n. \text{ if } n < 1 \text{ then } 1 \text{ else } n \times (f(n - 1)) \]

Note: You can use it for mutual recursion too.
Pseudo-math digression

Why is it called fix? In math, a fixed-point of a function g is an x such that $g(x) = x$.

Let g be $\lambda f. \lambda n. \text{if } n < 1 \text{ then } 1 \text{ else } n \ast (f(n - 1))$.

If g is applied to a function that computes factorial for arguments $\leq m$, then g returns a function that computes factorial for arguments $\leq m + 1$.

Now g has type $(\text{int} \rightarrow \text{int}) \rightarrow (\text{int} \rightarrow \text{int})$. The fix-point of g is the function that computes factorial for all natural numbers.

And $\text{fix } g$ is equivalent to that function. That is, $\text{fix } g$ is the fix-point of g.
Typing fix

\[\Gamma \vdash e : \tau \rightarrow \tau \]
\[\Gamma \vdash \text{fix } e : \tau \]

Math explanation: If \(e \) is a function from \(\tau \) to \(\tau \), then \(\text{fix } e \), the fixed-point of \(e \), is some \(\tau \) with the fixed-point property. So it’s something with type \(\tau \).

Operational explanation: \(\text{fix } \lambda x. e' \) becomes \(e'[\text{fix } \lambda x. e'/x] \). The substitution means \(x \) and \(\text{fix } \lambda x. e' \) better have the same type. And the result means \(e' \) and \(\text{fix } \lambda x. e' \) better have the same type.

Note: Proving soundness is straightforward!
General approach

We added lets, booleans, pairs, records, sums, and fix. Let was syntactic sugar. Fix made us Turing-complete by “baking in” self-application. The others added types.

Whenever we add a new form of type τ there are:

- Introduction forms (ways to make values of type τ)
- Elimination forms (ways to use values of type τ)

What are these forms for functions? Pairs? Sums?

When you add a new type, think “what are the intro and elim forms”?
Anonymity

We added many forms of types, all *unnamed* a.k.a. *structural*.

Many real PLs have (all or mostly) *named* types:

- Java, C, C++: all record types (or similar) have names (omitting them just means compiler makes up a name)
- Caml sum-types have names.

A never-ending debate:

- Structural types allow more code reuse, which is good.
- Named types allow less code reuse, which is good.
- Structural types allow generic type-based code, which is good.
- Named types allow type-based code to distinguish names, which is good.

The theory is often easier and simpler with structural types.
Termination

Surprising fact: If \(\cdot \vdash e : \tau \) in the ST\(\lambda\)C with all our additions except fix, then there exists a \(v \) such that \(e \rightarrow^* v \).

That is, all programs terminate.

So termination is trivially decidable (the constant “yes” function), so our language is not Turing-complete.

Proof is in the book. It requires cleverness because the size of expressions does not “go down” as programs run.

Non-proof: Recursion in \(\lambda\) calculus requires some sort of self-application. Easy fact: For all \(\Gamma \), \(x \), and \(\tau \), we cannot derive \(\Gamma \vdash x \ x : \tau \).