CSE 505: Concepts of Programming Languages

Dan Grossman
Fall 2006
Lecture 3—Operational Semantics for IMP
Where we are

- Done: IMP syntax, structural induction, Caml basics
- Today: IMP operational semantics
- Tonight: You could (almost?) finish homework 1
Review

IMP’s abstract syntax is defined inductively:

\[
\begin{align*}
 s &::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \text{ s s} \mid \text{while } e \text{ s} \\
 e &::= c \mid x \mid e + e \mid e * e \\
 (c &\in \{\ldots, -2, -1, 0, 1, 2, \ldots\}) \\
 (x &\in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\})
\end{align*}
\]

We haven’t said what programs mean yet! (Syntax is boring)

But we have a social understanding about variables and control flow
Expression semantics

\[
H ::= \cdot \mid H, x \mapsto c
\]

<table>
<thead>
<tr>
<th>Expression</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H; e \Downarrow c) Const</td>
<td>(H; c \Downarrow c)</td>
</tr>
<tr>
<td>(H; e_1 \Downarrow c_1) (H; e_2 \Downarrow c_2) Add</td>
<td>(H; e_1 \Downarrow c_1) (H; e_2 \Downarrow c_2) Mult</td>
</tr>
<tr>
<td>(H; e_1 + e_2 \Downarrow c_1 + c_2)</td>
<td>(H; e_1 \ast e_2 \Downarrow c_1 \ast c_2)</td>
</tr>
</tbody>
</table>

“pronounce” as proofs (upward) or evaluations (downward)
Expression semantics cont’d

\[H(x) = \begin{cases}
 c & \text{if } H = H', x \mapsto c \\
 H'(x) & \text{if } H = H', y \mapsto c' \\
 0 & \text{if } H = \cdot
\end{cases} \]

Last case avoids “errors” (makes function total)

We have rule schemas (“rules”). We instantiate a rule by replacing metavariables appropriately.
Instantiating rules

Example instantiation:

\[\cdot, y \mapsto 4 ; 3 + y \Downarrow 7 \quad \cdot, y \mapsto 4 ; 5 \Downarrow 5 \]

\[\cdot, y \mapsto 4 ; (3 + y) + 5 \Downarrow 12 \]

Instantiates:

\[H ; e_1 \Downarrow c_1 \quad H ; e_2 \Downarrow c_2 \]

\[H ; e_1 + e_2 \Downarrow c_1 + c_2 \]

with \(H = \cdot, y \mapsto 4, e_1 = (3 + y), c_1 = 7, e_2 = 5, c_2 = 5 \)
Derivations

A (complete) derivation is a tree of instantiations with axioms at the leaves.

Example:

\[
\begin{array}{c}
\cdot, y \mapsto 4 ; 3 \downarrow 3 \\
\hline
\cdot, y \mapsto 4 ; y \downarrow 4 \\
\hline
\cdot, y \mapsto 4 ; 3 + y \downarrow 7 \\
\cdot, y \mapsto 4 ; 5 \downarrow 5 \\
\hline
\cdot, y \mapsto 4 ; (3 + y) + 5 \downarrow 12
\end{array}
\]

So \(H ; e \downarrow c \) if there exists a derivation with \(H ; e \downarrow c \) at the root.
Some theorems

• Progress: For all H and e, there exists a c such that $H ; e \Downarrow c$.

• Determinacy: For all H and e, there is at most one c such that $H ; e \Downarrow c$.

We rigged it that way...

what would division, undefined-variables, or gettime() do?

Note: Our semantics is \emph{syntax-directed}.
Some theory comments

Inference rules are PL notation for some standard math...

- “H and e evaluating to c” is a relation on triples of the form (H, e, c) (i.e., $H ; e \Downarrow c$)
- Relation defined inductively on the derivation height
- Can define syntax the same way:

\[
\begin{align*}
 c & \in E \\
 x & \in E \\
 e_1 & \in E \\
 e_2 & \in E
\end{align*}
\]

\[
\begin{align*}
 e_1 + e_2 & \in E \\
 e_1 * e_2 & \in E
\end{align*}
\]

Less metanotation for you, but not what “we” do
Statement semantics

\[H_1 ; s_1 \rightarrow H_2 ; s_2 \]

ASSIGN

\[
H ; e \downarrow c
\]

\[
H ; x := e \rightarrow H, x \mapsto c ; \text{skip}
\]

SEQ1

\[
H ; \text{skip}; s \rightarrow H ; s
\]

SEQ2

\[
H ; s_1 \rightarrow H' ; s_1'
\]

\[
H ; s_1; s_2 \rightarrow H' ; s_1'; s_2
\]

IF1

\[
H ; e \downarrow c \quad c > 0
\]

\[
H ; \text{if} \ e \ s_1 \ s_2 \rightarrow H ; s_1
\]

IF2

\[
H ; e \downarrow c \quad c \leq 0
\]

\[
H ; \text{if} \ e \ s_1 \ s_2 \rightarrow H ; s_2
\]
Statement semantics cont’d

What about \textbf{while} \(e \) \(s \) (do \(s \) and loop if \(e > 0 \))?

\[
\text{WHILE} \\
H \; ; \; \textbf{while} \; e \; s \rightarrow H \; ; \; \textbf{if} \; e \; (s; \; \textbf{while} \; e \; s) \; \textbf{skip}
\]

Many other equivalent definitions possible
Program semantics

We defined $H ; s \rightarrow H' ; s'$, but what does “$s$” mean/do?

Our machine iterates: $H_1 ; s_1 \rightarrow H_2 ; s_2 \rightarrow H_3 ; s_3 \ldots$

Let $H_1 ; s_1 \rightarrow^* H_2 ; s_2$ mean “becomes after some number of steps”
and pick a special “answer” variable ans

The program s produces c if $; s \rightarrow^* H ; skip$ and $H(ans) = c$

Does every s produce a c?
Example program execution

\[x := 3; (y := 1; \textbf{while } x (y := y \times x; x := x - 1)) \]

(Let’s write some of the state sequence. You can justify each step with a full derivation. Let \(s = (y := y \times x; x := x - 1) \).

\[
\text{\(\cdot; x := 3; y := 1; \textbf{while } x s \)}
\]
\[
\rightarrow \text{\(\cdot, x \mapsto 3; \textbf{skip}; y := 1; \textbf{while } x s \)}
\]
\[
\rightarrow \text{\(\cdot, x \mapsto 3; y := 1; \textbf{while } x s \)}
\]
\[
\rightarrow^2 \text{\(\cdot, x \mapsto 3, y \mapsto 1; \textbf{while } x s \)}
\]
\[
\rightarrow \text{\(\cdot, x \mapsto 3, y \mapsto 1; \textbf{if } x (s; \textbf{while } x s) \textbf{skip} \)}
\]
\[
\rightarrow \text{\(\cdot, x \mapsto 3, y \mapsto 1; y := y \times x; x := x - 1; \textbf{while } x s \)}
\]
\[\rightarrow^2 \quad \text{\ldots, } x \leftarrow 3, y \leftarrow 1, y \leftarrow 3; \ x := x - 1; \ \text{while} \ x \ s \]
\[\rightarrow^2 \quad \text{\ldots, } x \leftarrow 3, y \leftarrow 1, y \leftarrow 3, x \leftarrow 2; \ \text{while} \ x \ s \]
\[\rightarrow^2 \quad \text{\ldots, } y \leftarrow 3, x \leftarrow 2; \ \text{if} \ x \ (s; \ \text{while} \ x \ s) \ \text{skip} \]
\[\ldots \]
\[\rightarrow^2 \quad \text{\ldots, \ldots, } y \leftarrow 6, x \leftarrow 0; \ \text{skip} \]
Where we are

We have defined $H ; e \Downarrow c$ and $H ; s \rightarrow H' ; s'$ and extended the latter to give s a meaning.

The way we did expressions is “large-step” or “natural”.

The way we did statements is “small-step”.

So now you have seen both.

Large-step does not distinguish errors and divergence.
Establishing Properties

We can prove a property of a terminating program by “running” it.

Example: Our last program terminates with x holding 0.

We can prove a program diverges, i.e., for all H and n,

$\cdot; s \rightarrow^n H; \text{skip}$ cannot be derived.

Example: \textbf{while 1 skip}

By induction on n with stronger induction hypothesis: If we can derive

$\cdot; s \rightarrow^n H; s'$ then s' is \textbf{while 1 skip} or

\textbf{if 1 (skip; while 1 skip)} \textbf{skip} or \textbf{skip; while 1 skip}.
More General Proofs

We can prove properties of executing all programs (satisfying another property)

Example: If H and s have no negative constants and $H \cdot s \rightarrow^* H' \cdot s'$, then H' and s' have no negative constants.

Example: If for all H, we know s_1 and s_2 terminate, then for all H, we know $H;(s_1; s_2)$ terminates.