CSE 505:
Concepts of Programming Languages

Dan Grossman
Fall 2006
Lecture 2—Abstract Syntax
Finally, some content

For our first formal language, let’s leave out functions, objects, records, threads, exceptions, ...

What’s left: integers, assignment (mutation), control-flow

(Abstract) syntax using a common meta-notation:
“A program is a statement s defined as follows”

\[
s ::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \ s \ s \mid \text{while } e \ s
\]

\[
e ::= c \mid x \mid e + e \mid e * e
\]

($c \in \{\ldots, -2, -1, 0, 1, 2, \ldots\}$)

($x \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\}$)
Syntax definition

\[s ::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \ s \ s \mid \text{while } e \ s \]

\[e ::= c \mid x \mid e + e \mid e * e \]

\((c \in \{-2, -1, 0, 1, 2, \ldots\})\)

\((x \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\})\)

- Blue is metanotation (::= “can be a”, | “or”)
- Metavariables represent “anything in the syntax class”
- Use parentheses to disambiguate, e.g., if \(x \) skip \(y := 0; z := 0 \)

E.g.: \(y := 1; \text{while } x \) (\(y := y * x; x := x - 1 \))
Inductive definition

With care, our syntax definition is not circular!

\[
\begin{align*}
 s & ::= \text{skip} \mid x ::= e \mid s; s \mid \text{if } e s \mid \text{while } e s \\
 e & ::= c \mid x \mid e + e \mid e * e
\end{align*}
\]

Let \(E_0 = \emptyset \). For \(i > 0 \), let \(E_i \) be \(E_{i-1} \) union “expressions of the form \(c, x, e + e, \) or \(e * e \) where \(e \in E_{i-1} \)” . Let \(E = \bigcup_{i \geq 0} E_i \). The set \(E \) is what we mean by our compact metanotation.

To get it: What set is \(E_1 \)? \(E_2 \)?

Explain statements the same way. What is \(S_1 \)? \(S_2 \)? Stop only when you’re bored.
All we have is syntax (sets of abstract-syntax trees), but let’s get the idea of proving things carefully...

Theorem 1: There exist expressions with three constants.
Our First Theorem

There exist expressions with three constants.

Pedantic Proof: Consider $e = 1 + (2 + 3)$. Showing $e \in E_3$ suffices because $E_3 \subseteq E$. Showing $2 + 3 \in E_2$ and $1 \in E_2$ suffices...

PL-style proof: Consider $e = 1 + (2 + 3)$ and definition of E.

Theorem 2: All expressions have at least one constant or variable.
Our Second Theorem

All expressions have at least one constant or variable.

Pedantic proof: By induction on i, show for all $e \in E_i$.

• Base: $i = 0$ implies $E_i = \emptyset$

• Inductive: $i > 0$. Consider arbitrary $e \in E_i$ by cases:
 - $e \in E_{i-1} \ldots$
 - $e = c \ldots$
 - $e = x \ldots$
 - $e = e_1 + e_2$ where $e_1, e_2 \in E_{i-1} \ldots$
 - $e = e_1 \ast e_2$ where $e_1, e_2 \in E_{i-1} \ldots$
A “Better” Proof

All expressions have at least one constant or variable.

PL-style proof: By structural induction on (rules for forming an expression) e. Cases:

- c . . .
- x . . .
- $e_1 + e_2$. . .
- $e_1 * e_2$. . .

Structural induction invokes the induction hypothesis on smaller terms. It is equivalent to the pedantic proof, and the convenient way.