
'

&

$

%

CSE 505: Concepts of Programming Languages

Dan Grossman

Fall 2006

Lecture 10— Curry-Howard Isomorphism, Evaluation Contexts, Stacks,

Abstract Machines

Dan Grossman CSE505 Fall 2006, Lecture 10 1



'

&

$

%

Outline
Two totally different topics:

• Curry-Howard Isomorphism

– Types are propositions

– Programs are proofs

• Equivalent ways to express evaluation of λ-calculus

– Evaluation contexts

– Explicit stacks

– Closures instead of substitution

A series of small steps from our operational semantics to a fairly

efficient “low-level” implementation!

Note: lec10.ml contains much of today’s lecture

Evaluation contexts / stacks will let us talk about continuations

Dan Grossman CSE505 Fall 2006, Lecture 10 2



'

&

$

%

Curry-Howard Isomorphism

What we did:

• Define a programming language

• Define a type system to rule out programs we don’t want

What logicians do:

• Define a logic (a way to state propositions)

– Example: Propositional logic

p ::= b | p ∧ p | p ∨ p | p → p | true | false

• Define a proof system (a way to prove propositions)

But it turns out we did that too!

Slogans:

• “Propositions are Types”

• “Proofs are Programs”

Dan Grossman CSE505 Fall 2006, Lecture 10 3



'

&

$

%

A slight variant

Let’s take the explicitly typed STλC with base types b1, b2, . . .,

no constants, pairs, and sums

Even without constants, plenty of terms type-check:

λx:b17. x

λx:b1. λf :b1 → b2. f x

λx:b1 → b2 → b3. λy:b2. λz:b1. x z y

λx:b1. (A(x), A(x))
λf :b1 → b3. λg:b2 → b3. λz:b1 + b2. (match z with Ax. f x | Bx. g x)
λx:b1 ∗ b2. λy:b3. ((y, x.1), x.2)

And plenty of types have no terms with that type:

b1 b1 → b2 b1 + (b1 → b2) b1 → (b2 → b1) → b2

Punchline: I knew all that because of logic, not PL!

Dan Grossman CSE505 Fall 2006, Lecture 10 4



'

&

$

%

Propositional Logic

With → for implies, + for inclusive-or and ∗ for and:

p1

p1 + p2

p2

p1 + p2

p1 p2

p1 ∗ p2

p1 ∗ p2

p1

p1 ∗ p2

p2

p1 → p2 p1

p2

We have one language construct and typing rule for each one!

The Curry-Howard Isomorphism: For every typed λ-calculus there is a

logic and for every logic a typed λ-calculus such that:

• If there is a closed expression with a type, then the corresponding

proposition is provable in the logic.

• If there is no such expression, then the corresponding proposition

is not provable in the logic.

Dan Grossman CSE505 Fall 2006, Lecture 10 5



'

&

$

%

Why care?

Because:

• This is just fascinating.

• For decades these were separate fields.

• Thinking “the other way” can help you know what’s

possible/impossible

• Can form the basis for automated theorem provers

• Shows λ-calculus is no more (or less) “made up” than logic.

– Type systems are not ad hoc piles of rules.

So, every typed λ-calculus is a proof system for a logic...

Is STλC with pairs and sums a complete proof system for

propositional logic? Almost...

Dan Grossman CSE505 Fall 2006, Lecture 10 6



'

&

$

%

Classical vs. Constructive

Classical propositional logic has the “law of the excluded middle”:

p1 + (p1 → p2)

(Think “p or not p” – also equivalent to double-negation.)

STλC has no proof for this; there is no expression with this type.

Logics without this rule are called constructive. They’re useful because

proofs “know how the world is” and “are executable” and “produce

examples”.

You can still “branch on possibilities”:

((p1 + (p1 → p2)) ∗ (p1 → p3) ∗ ((p1 → p2) → p3)) → p3

Dan Grossman CSE505 Fall 2006, Lecture 10 7



'

&

$

%

Fix

A “non-terminating proof” is no proof at all.

Remember the typing rule for fix:

Γ ` e : τ → τ

Γ ` fix e : τ

That let’s us prove anything! For example: fix λx:b3. x has type b3.

So the “logic” is inconsistent (and therefore worthless).

Dan Grossman CSE505 Fall 2006, Lecture 10 8



'

&

$

%

Toward Evaluation Contexts
(untyped) λ-calculus with extensions has lots of “boring inductive rules”:

e1 → e′
1

e1 e2 → e′
1 e2

e2 → e′
2

v e2 → v e′
2

e → e′

e.1 → e′.1

e → e′

e.2 → e′.2

e1 → e′
1

(e1, e2) → (e′
1, e2)

e2 → e′
2

(v1, e2) → (v1, e′
2)

e → e′

A(e) → A(e′)

e → e′

B(e) → B(e′)

e → e′

match e with Ax. e1 | By. e2 → match e′ with Ax. e1 | By. e2

and some “interesting do-work rules”:

(λx. e) v → e[v/x] (v1, v2).1 → v1 (v1, v2).2 → v2

match A(v) with Ax. e1 | By. e2 → e1[v/x]

match B(v) with Ay. e1 | Bx. e2 → e2[v/x]

Dan Grossman CSE505 Fall 2006, Lecture 10 9



'

&

$

%

Evaluation Contexts
We can define evaluation contexts, which are expressions with one hole

where “interesting work” may occur:

E ::= [·] | E e | v E | (E, e) | (v, E) | E.1 | E.2

| A(E) | B(E) | (match E with Ax. e1 | By. e2)

Define “filling the hole” E[e] in the obvious way (see ML code).

Semantics is now just “interesting work” rules (written e
p→ e′) and:

e
p→ e′

E[e] → E[e′]

So far, just concise notation pushing the work to decomposition: Given

e, find an E, ea, e′
a such that e = E[ea] and ea

p→ e′
a.

Theorem (Unique Decomposition): If · ` e : τ , then e is a value or

there is exactly one decomposition of e.

Dan Grossman CSE505 Fall 2006, Lecture 10 10



'

&

$

%

Second Implementation

So far two interpreters:

• Old-fashioned small-step: derive a step, and iterate

• Evaluation-context small-step: decompose, fill the whole with the

result of the primitive-step, and iterate

Decomposing “all over” each time is awfully redundant (as is the

old-fashioned build a full-derivation of each step).

We can “incrementally maintain the decomposition” if we represent it

conveniently. Instead of nested contexts, we can keep a list:

S ::= · | Lapp(e)::S | Rapp(v)::S | Lpair(e)::S | ...

See the code: This representation is isomorphic (there’s a bijection) to

evaluation contexts.

Dan Grossman CSE505 Fall 2006, Lecture 10 11



'

&

$

%

Stack-based machine

This new form of evaluation-context is a stack.

Since we don’t re-decompose at each step, our “program state” is a

stack and an expression.

At each step, the stack may grow (to recur on a nested expression) or

shrink (to do a primitive step)

Now that we have an explicit stack, we are not using the

meta-language’s call-stack (the interpreter is just a while-loop).

But substitution is still using the meta-language’s call-stack.

Dan Grossman CSE505 Fall 2006, Lecture 10 12



'

&

$

%

Stack-based with environments

Our last step uses environments, much like you will in homework 3.

Now everything in our interpreter is tail-recursive (beyond the explicit

representation of environments and stacks, we need only O(1) space).

You could implement this last interpreter in assembly without using a

call instruction.

Dan Grossman CSE505 Fall 2006, Lecture 10 13



'

&

$

%

Conclusions
Proving each interpreter version equivalent to the next is tractable.

In our last version, every primitive step is O(1) time and space except

variable lookup (but that’s easily fixed in a compiler).

Perhaps more interestingly, evaluation contexts “give us a handle” on

the “surrounding computation”, which will let us do funky things like

make “stacks” (called continuations) first-class in the language.

• “get current continuation; bind it to a variable”

• “replace current continuation with saved one”

e ::= . . . | letcc x. e | throw e e | cont E

v ::= . . . | cont E

E ::= . . . | throw E e | throw v E

E[letcc x. e] → E[e[cont E/x]] E[throw (cont E′) v] → E′[v]

Dan Grossman CSE505 Fall 2006, Lecture 10 14


