Name:__

CSE 505, Fall 2003, Final Examination
12 December 2003

Please do not turn the page until everyone is ready.

Rules:

• The exam is open-book, open-note, closed electronics.

• Please stop promptly at 12:20.

• You can rip apart the pages, but please write your name on each page.

• You can turn in other pieces of paper.

• There are six questions (all with subparts), worth equal amounts. The subparts are not necessarily worth equal amounts.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are roughly in the order we covered the material, not necessarily order of difficulty. Skip around.

• If you have questions, ask.

• Relax. You are here to learn, not beat the mean.
1. Assume a typed lambda-calculus with recursive types, product types, and sum types. (You may choose the formulation of recursive types with subtyping or explicit roll/unroll. Just state your choice.)

(a) Give a type describing binary trees of integers. A binary tree of integers is either a leaf (which holds one integer) or a node (which holds one integer in addition to two binary (sub)trees of integers).

(b) Write a one-argument function that takes an integer and produces a leaf holding that integer.

(c) Give a full typing derivation showing that your answer to the previous part is a function from integers to binary trees of integers.

Solution:
Using roll and unroll:

(a) \(\mu \alpha . (\text{int} + (\text{int} \times \alpha \times \alpha)) \)

(b) \(\lambda x : \text{int} . \text{roll}_{\mu \alpha . (\text{int} + (\text{int} \times \alpha \times \alpha))} (\text{inl} x) \)

(c)

\[
\begin{array}{c}
\vdash x : \text{int} \\
\vdash x \mapsto \text{inl} x : (\text{int} + (\mu \alpha . (\text{int} + (\text{int} \times \alpha \times \alpha))) \times (\mu \alpha . (\text{int} + (\text{int} \times \alpha \times \alpha)))) \\
\vdash x : \text{int} \mapsto \text{roll}_{\mu \alpha . (\text{int} + (\text{int} \times \alpha \times \alpha))} (\text{inl} x) : \mu \alpha . (\text{int} + (\text{int} \times \alpha \times \alpha))) \\
\vdash \lambda x : \text{int} . \text{roll}_{\mu \alpha . (\text{int} + (\text{int} \times \alpha \times \alpha))} (\text{inl} x) : \text{int} \rightarrow (\mu \alpha . (\text{int} + (\text{int} \times \alpha \times \alpha)))
\end{array}
\]
2. Assume a typed lambda-calculus with records, references, and subtyping. For each of the following, describe exactly the conditions under which the subtyping claim holds.

Example question: \(\{ l_1 : \tau_1, \ l_2 : \tau_2 \} \leq \{ l_1 : \tau_3, \ l_2 : \tau_4 \} \)

Example answer: “when \(\tau_1 \leq \tau_3 \) and \(\tau_2 \leq \tau_4 \)”

Your answer should be “fully reduced” in the sense that if you say \(\tau \leq \tau' \), then \(\tau \) or \(\tau' \) or both should be \(\tau_i \) for some number \(i \) where \(\tau_i \) appears in the question.

(a) \(\{ \{ l_1 : \tau_1, l_2 : \tau_2 \} \rightarrow \text{int} \} \leq \{ \{ l_1 : \tau_3, l_2 : \tau_4 \} \rightarrow \text{int} \)

(b) \(\{ l_1 : (\tau_1 \text{ ref}) \} \leq \{ l_1 : \tau_2 \} \)

(c) \((\tau_1 \rightarrow \tau_2) \rightarrow (\tau_3 \rightarrow \tau_4) \leq (\tau_5 \rightarrow \tau_6) \rightarrow (\tau_7 \rightarrow \tau_8) \)

(d) \((\tau_1 \rightarrow \tau_2) \text{ ref} \leq (\tau_3 \rightarrow \tau_4) \text{ ref} \)

Solution:

(a) when \(\tau_3 \leq \tau_1 \) and \(\tau_4 \leq \tau_2 \)
(b) when \(\tau_2 \) has the form \(\tau_3 \text{ ref} \), \(\tau_3 \leq \tau_1 \), and \(\tau_1 \leq \tau_3 \)
(c) when \(\tau_1 \leq \tau_5 \), \(\tau_6 \leq \tau_2 \), \(\tau_7 \leq \tau_3 \), and \(\tau_4 \leq \tau_8 \)
(d) when \(\tau_1 \leq \tau_3 \), \(\tau_3 \leq \tau_1 \), \(\tau_2 \leq \tau_4 \), and \(\tau_4 \leq \tau_2 \)
3. Consider the following O'Caml code.

```ocaml
let catch_all1 t1 t2 = try t1 () with x -> t2 ()
let catch_all2 t1 t2 = try t1 () with x -> t2
```

(a) Under what conditions, if any, does using `catch_all1` raise an exception?
(b) Under what conditions, if any, does using `catch_all2` raise an exception?
(c) What type does O'Caml give `catch_all1`? (You can give your answer in O'Caml notation or System-F notation.)
(d) What type does O'Caml give `catch_all2`? (You can give your answer in O'Caml notation or System-F notation.)

Solution:

(a) when calling its first argument raises an exception and calling its second argument raises an exception
(b) never
(c) Caml: `(unit -> α) → (unit → α) → α`
(d) Caml: `(unit → α) → α → α`
4. Consider these definitions in a class-based OO language:

```java
class Thunk {
    abstract int apply();
}

class A {
    private int y;
    int g() { <<a hard-to-compute function using self.y>> }  // line 0
    unit set_y(int i) { self.y := i }
}

class B {
    int f1(int x, bool b) { if b then x else 0 }  // line 1
    int f2(Thunk x, bool b) { if b then x.apply() else 0 }

    unit f(A a, bool b) {
        print_int(self.f1(a.g(), b)); // line 2 (irrelevant until part (e))
        print_int(self.f1(a.g(), b)); // line 3 (identical to line 1)
    }
}
```

(a) Replace lines 1 and 3 with code that uses `f2` and not `f1`, but still prints the same number. You should declare a subclass of `Thunk` (outside of `class B`) and use this class (including on line 0). Your subclass should define a constructor that takes argument(s) and initializes fields appropriately. (Hint: Pass `a` to the constructor.)

(b) Compared to the original version, when is the change you made in part (a) faster and when is it slower?

(c) Change your subclass of `Thunk` so that the first time `apply` is called it stores the result it returns in private state. When called again, `apply` should return the stored result. Lines 1 and 3 should be the same as in part (a).

(d) Compared to the change in part (a), does the change in part (c) make line 1 faster or slower? Does it make line 3 faster or slower?

(e) Write a line 2 that makes the change in part (c) incorrect in the sense that `f` might print different output than in part (a).

The next page is blank.
(a) class T extends Thunk {
 A a;
 constructor(A x) { a := x; }
 int apply() { return a.g(); }
}

unit f(A a, bool b) {
 Thunk t = new T(a);
 print_int(self.f2(t,b));
 print_int(self.f2(t,b));
}

(b) It is faster when \(b \) is false (because we never execute \(a.g() \)) and (slightly) slower when \(b \) is true (because we build an extra object).

(c) class T extends Thunk {
 A a;
 bool done;
 int ans;
 constructor(A x) { a := x; done := false; }
 int apply() {
 if(not done) ans := a.g();
 ans;
 }
}

(d) It makes line 1 slightly slower (if \(b \) is true) because we store the result. It makes line 3 much faster (if \(b \) is true) because the result is stored.

(e) a.set_y(42);
5. Consider these definitions in a class-based OO language:

```java
class C1 {
    int g() { return 0; }
    int f() { return g(); }
}
class C2 extends C1 {
    int g() { return 1; }
    int m4(D2 x) { return x.f(); }
}
class D1 {
    private C1 x = new C1();
    int g() { return 0; }
    int f() { return x.f(); }
}
class D2 extends D1 {
    int g() { return 1; }
}

class Main {
    int m1(C1 x) { return x.f(); }
    int m2(C2 x) { return x.f(); }
    int m3(D1 x) { return x.f(); }
    int m4(D2 x) { return x.f(); }
}
```

Assume this is not the entire program, but the rest of the program does not declare subclasses of the classes above.

Explain your answers:

(a) True or false: Changing the body of `m1` to `return 0` produces an equivalent `m1`.
(b) True or false: Changing the body of `m2` to `return 1` produces an equivalent `m2`.
(c) True or false: Changing the body of `m3` to `return 0` produces an equivalent `m3`.
(d) True or false: Changing the body of `m4` to `return 1` produces an equivalent `m4`.
(e) How do your answers change if the rest of the program might declare subclasses of the classes above (excluding `Main`)?

Solution:

(a) false: If `m1` is passed an instance of `C2`, it will return 1.
(b) true: there are no subtypes of `C2`, so any call to `m2` will pass an instance of `C2`, and late-binding ensures the `f` method of a `C2` returns 1.
(c) true: Any call to `m3` will pass an instance of `D1` or `D2`. The `f` methods for both are the same: return the result of `C1`'s `f` method.
(d) false: same reason as previous question
(e) All claims become false because calls to `f` in `Main` could resolve to methods defined in subclasses we do not see above.
6. Consider a class-based OO language with this ill-advised addition: We can declare new classes with “class C restricts D by m.” If D is a class with a method named m, then this declaration creates a class C that inherits the fields and methods of D except C has no method m.

(a) Given class C restricts D by m, show that C should not be a subtype of D. Give an example expression that would type-check if C were a subtype of D but that would lead to a failed method-lookup, regardless of what members D has (other than m).

(b) Given class C restricts D by m, show that C may be a bad type, even without subtyping. Give an example class D and an expression e that would type-check such that evaluation of e would lead to a failed method-lookup. (Hint: D (and therefore C) can have methods other than m.)

(c) If we have interface I restricts J by m instead of class C restricts D by m, is it wrong to allow I ≤ J (or does the problem from part (a) no longer apply)? Explain.

(d) If we have interface I restricts J by m instead of class C restricts D by m, can I be a bad type even without subtyping (or does the problem from part (b) no longer apply)? Explain.

Solution:

(a) (D)(new C()).m() (cast for emphasis, not necessary)

(b) class D { unit n() { m(); } unit m() {} } and (new C()).n()

(c) Yes, it is still wrong. Part (a) is a typing problem and interfaces are types. Subtypes should have more fields and methods, not fewer.

(d) No, this is not a problem. Part (b) is a method-lookup problem, which has to do with classes not types. The superinterface only defines the presence of a method, not a method body that might depend on other methods.