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Object-Oriented Programming

OOP =

Abstract Data Types ...

• package representation of data structure
together with operations on the data structure

• encapsulate internal implementation details

+ Inheritance ...

• support defining a new ADT as an incremental change to 
previous ADT(s)

• share operations across multiple ADTs

+ Subtype Polymorphism ...

• variables can hold instances of different ADTs
that have a common interface

+ Dynamic Dispatching

• run-time support for selecting right implementation of an 
operation, depending on argument(s)
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Some OO languages

Simula 67: the original

Smalltalk-80: popularized OO

Self: Smalltalk-80 refinement � purest OO

C++: OO for the hacking masses; complex & powerful

Java, C#: cleaned up, more portable variants of C++

CLOS: powerful OO part of Common Lisp

Cecil, MultiJava, EML, Diesel:
OO languages from my research group

Emerald, Kaleidoscope: other OO languages from UW
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Abstract data types

ADT: a user-defined data type along with
operations for manipulating values of the type

• allow language to be extended with new types,
raising & customizing the level of the language

“Abstract” means encapsulated

• exposes only interface to data structure & operations,
hides internal implementation details

• presents simpler external view by hiding distracting internal 
details

• prevents undesired dependencies of
clients on implementation

• allows it to be changed w/o affecting clients

Called a class in (most) OO languages

• values of data type called objects or instances of the class

• operations called methods

• components of data type called instance variables

• each class implicitly defines a new type

Modules have similar benefits
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Inheritance

Most recognizable aspect of OO languages & programs

Define new class as incremental modification of existing class

• new class is subclass of the original class (the superclass)

• by default, inherit superclass’s methods & instance vars

• can add more methods & instance vars in subclass

• can override (replace) methods in subclass

• but not instance variables, usually
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Example

class Rect angl e {
Poi nt  cent er ;
i nt  hei ght ,  wi dt h;

i nt  ar ea( )  {  r et ur n hei ght  *  wi dt h;  }
voi d dr aw( Out put Devi ce out )  {  . . .  }
voi d move( Poi nt  new_c)  {  cent er  = new_c;  }
. . .

}

class Col or edRect angl e extends Rect angl e {
/ /  center, height, & width inherited
Col or  col or ;

/ /  area, move, etc. inherited
/ /  draw overridden
voi d dr aw( Out put Devi ce out )  {  . . .  }

}

Rect angl e r  = new Rect angl e( ) ;
Col or edRect angl e cr  = new Col or edRect angl e( ) ;
. . .

pr i nt ( r . ar ea( ) ) ;  pr i nt ( cr . ar ea( ) ) ;

r . dr aw( ) ;  cr . dr aw( ) ;
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Benefits of inheritance

Can reuse ADT implementation code easily

• overriding allows customization of inherited code,
allowing still more reuse

Supports key idiom of factoring code into common superclass

• superclass can be abstract
• incomplete, fleshed out by subclasses

• encourages development of
rich libraries of related data structures

May model real world scenario well

• use class to model different things

• use inheritance for classification of things:
subclass is a special case of superclass

Craig Chambers 233 CSE 505

Pitfalls of inheritance

Inheritance often overused by novices

Code gets fragmented into small factored pieces

Simple extension & overriding may be too limited

• e.g. exceptions in classification hierarchies

A complex mechanism,
with subtle static typechecking constraints
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Subtype polymorphism

Subtyping: organize types into more general types 
(supertypes) and more specific types (subtypes)

• values of a supertype are a superset of values of a subtype

• each class is a type � subclass is a subtype of superclass

Subtype polymorphism:
allow value of subtype to be used wherever
value of supertype is expected

• code written for superclass reused for all subclass

Example:

voi d cl i ent ( Rect angl e r )  {

. . .  r . dr aw( . . . )  . . .  }

Rect angl e r  = . . . ;
c l i ent ( r ) ;  / /  legal

Col or edRect angl e cr  = . . . ;
c l i ent ( cr ) ;  / /  legal: ColoredRect. subtypes Rectangle

But in each call of cl i ent ,
what implementation of dr aw is invoked?
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Dynamic dispatching

Dynamic dispatching:
when call an operation on an object,
invoke appropriate operation for dynamic class/type
of object, not static class/type

voi d cl i ent ( Rect angl e r )  {

. . .  r . dr aw( . . . )  . . .  }

Rect angl e r  = . . . ;
c l i ent ( r ) ;  / /  invokes Rectangle’s draw method

Col or edRect angl e cr  = . . . ;
c l i ent ( cr ) ;  / /  invokes ColoredRect.’s draw method

Dynamic dispatching also known as
dynamic binding,
message passing,
virtual function calling,
generic function application
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“ Most appropriate method”

For a dynamically dispatched call obj . msg( ar gs) ,
the most appropriate method is the one defined in or 
inherited by the run-time class of obj  (the receiver)

• (in most OO languages)

An algorithm:

• start with run-time class C of obj

• if a method named msg is defined in C, then invoke it

• otherwise, recursively search in superclass of C

• if never find match, report run-time error
� static type checker guarantees this won’t happen

Precomputed virtual function tables are an optimized 
implementation that yields the same results as this algorithm
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Factoring

Key programming idiom: abstract superclasses

• defines common interface across multiple
implementations/variations/extensions

• provides (partial) default implementation

• can be left abstract

• others can be defined in terms of abstract “primitives”

• default methods can be overridden by subclasses if desired

Example:

abst r act  c l ass Shape {

/ /  draw in interface of all shapes,
/ /  but is implemented in subclasses
abst r act  voi d dr aw( Out put Devi ce out ) ;

/ /  drawConsole provides default implementation in terms of
/ /  draw (which can be called despite being abstract!)
voi d dr awConsol e( )  {  dr aw( Consol e) ;  }

. . .

}

/ /  lots of abstract and concrete subclasses of Shape
. . .
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Example: displaying shapes in a list

Without dynamic dispatching, use “typecase” idiom:

foreach ( Shape s  in scene. shapes)  {
if ( s. i s_r ect angl e( ) )  {

( ( Rect angl e) s) . dr aw( ) ;
}  else if ( s . i s_squar e( ) )  {

( ( Squar e) s) . dr aw( ) ;
}  else if ( s . i s_ci r c l e( ) )  {

( ( Ci r cl e) s) . dr aw( ) ;
}  else {

er r or ( “ unexpect ed shape” ) ;
}

}

• similar: switch over enum tags

With dynamic dispatching, use single message:

foreach ( Shape s  in scene. shapes)  {
s. dr aw( ) ;

}

What if add new Shape subclasses to library?
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Dynamic dispatching vs. static overloading

Example of overloaded methods:

voi d m( Rect angl e r )  {  . . .  }

voi d m( Col or edRect angl e cr )  {  . . .  }

Col or edRect angl e cr  = . . . ;

Rect angl e r  = cr ;

m( r ) ;  / /  which overloaded method gets invoked?

Like overloading:

• multiple methods with same name, in different classes

• use class/type of argument to resolve to desired method

Unlike overloading:

• resolve using run-time class of argument,
not static class/type

• consider only receiver argument, in most OO languages

• C++, Java, C#: regular static overloading on arguments, too

• CLOS, Cecil, EML, Diesel: resolve using all arguments
(multiple dispatching)

• MultiJava: support both multiple dispatching & static overloading
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Benefits of dynamic dispatching

Makes overriding in the face of subtype polymorphism
much more useful

• override won’t be ignored

• greater potential for reuse

Allows more factoring of common code into superclass,
since superclass code can be “parameterized” by
“sends to self/this” that invoke subclass-specific operations

Dynamically dispatched calls are points of external extensibility

• unlike typecase idioms, switches over enum tags, etc.

Craig Chambers 241 CSE 505

Pitfalls of dynamic dispatching

Tracing flow of control of code is harder

• control can pop up and down the class hierarchy

Adds run-time overhead

• space for run-time class info

• time to do method lookup

• but typically only an array lookup + indirect jump, not a search
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Design space for object-oriented languages

Basic object model:

• hybrid vs. pure OO

• class-based vs. classless (prototype-based)

Inheritance and dispatching model:

• single inheritance vs. multiple inheritance

• nested, virtual classes?

• single dispatching vs. multiple dispatching

Static type checking:

• types vs. classes

• by-name vs. structural (sub)typing

• subtype-bounded polymorphism?
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Self

A purely OO language

• developed as a Smalltalk successor by Ungar & Smith [87]

Theme: “the power of simplicity”

• à la λ-calculus, Scheme

Salient features:

• every thing is an object

• including primitives like numbers, booleans, first-class functions

• no classes, just objects

• every action is a message

• including basic operations like +, <

• including basic control structures like if, while

• including invocation of first-class functions

• including reading & assigning to instance variables

• nested scoping via inheritance

• dynamically typed

• interactive, reflective development environment

(A Self interpreter & some basic library code in available.)
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Self objects

An object is just a sequence of slots

Each slot is a key/value pair

• the key is a name

• the value is a reference to another object

Examples:

(  |  x = 3.  y = 4.  |  )

(  |  “ no sl ot s”  |  )

(  “ no s l ot s”  )
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Accessing slots

The only thing you can do to an object is send it a message

To fetch the contents of a slot, send the slot’s name as a 
message to the object

• postfix syntax

Example:

val aPoi nt  = ( |  x=3.  y=4.  | ) .

aPoi nt  x → 3

(val  isn’t real Self. We’ll see later how to define top-level 
names.)
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Methods

A method is just a special kind of object stored in a slot

• special because a method object has code as well as 
optional slots

Example:

val aPoi nt  =

( |  x=3.

y=4.

di s t anceToOr i gi n = (
( sel f  x  squar ed + sel f  y squar ed)  sqr t  ) .

| ) .

aPoi nt  di s t anceToOr i gi n → 5

Message send semantics:

• find slot with name matching message

• if it contains an object without code (e.g. 3 or aPoi nt ),
then just return that object

• otherwise, evaluate the code, and return its result

• code = a sequence of expressions, separated by periods



Craig Chambers 247 CSE 505

Syntax of messages

Unary messages: a simple identifier,
written after the receiver expression

• highest precedence, right-associative

• aPoi nt  di s t anceToOr i gi n

• sel f  x squar ed

• ( . . . )  sqr t

Binary messages: a sequence of punctuation symbols,
written between the receiver and the argument

• users can define their own operators!

• medium precedence, left-associative

• sel f  x squar ed + sel f  y squar ed

• 3 + 4 *  5

Keyword messages: an identifier followed by a colon,
written between the receiver and the argument

• (later: keywords with more than one argument)

• lowest precedence, non-associative

• aPoi nt  di s t anceTo:  anot her Poi nt

• sel f  x:  3
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Sends to self

In a method, the name of the receiver argument is sel f

• (like t hi s  in C++, Java, C#)

In a message send, can omit receiver expression

• defaults to sel f

• e.g. sel f  x squar ed can be written x squar ed

E.g.

val aPoi nt  =

( |  x=3.

y=4.

di s t anceToOr i gi n = (
( x squar ed + y squar ed)  sqr t  ) .

| ) .

Method calls now as concise as (traditional) instance variable 
accesses!

Craig Chambers 249 CSE 505

Mutable slots

Slots can be immutable or mutable

• slots initialized with = are immutable

• slots initialized with <-  are mutable

To change the contents of a slot named x  in object obj ,
send the x :  message to obj  with the new value as the arg.

• returns the receiver, e.g. for additional assignments

Example:

val aPoi nt  = ( |  x <-  3.  y <-  4.  | ) .

aPoi nt  x:  5.  “ updates aPoi nt ’ s x  slot to refer to 5”

aPoi nt  x → 5

aPoi nt  y:  aPoi nt  y + 1.  “ increments aPoi nt ’s y  slot”

( aPoi nt  x :  0)  y:  0.  “ reset aPoi nt  to the origin”
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Assignment slots

A mutable slot declaration x  <-  e actually generates two slots:

• a slot named x  initialized to e

• a slot named x :  initialized to the assignment primitive

When invoked, the assignment primitive stores its argument into 
the corresponding data slot

Aside from the special behavior of the assignment primitive, 
there’s nothing special about assignment slots or 
assignment messages



Craig Chambers 251 CSE 505

Making new objects

Can make new objects by either:

• evaluating an object constructor expression like
( |  x  = some expr .  y  = anot her  expr .  . . .  | )

• cloning an existing object

• clone = shallow copy

• clonee = the prototype a.k.a. the template

• not via instantiating a class!

A primitive unary message: _Cl one

• (later: a nicer c l one message in standard library)

Example:

val p1 = ( |  x  <-  3.  y  <-  4.  | ) .

val p2 = p1 _Cl one.

p2 x :  6.

p1 y :  8.

val r 1 = ( |  upper Lef t  = p1.  l ower Ri ght  = p2.  | ) .

val r 2 = r 1 _Cl one.

r 1 upper Lef t  x:  10.

r 2 upper Lef t  x → ??
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Methods with arguments

A method object can specify that it takes an argument by 
declaring an argument slot of the form : name

• no initializer; value provided by the caller

Example:

val aPoi nt  =

( |  x <-  3.

y <-  4.

+ = ( |  : p |  ( _Cl one x:  x  + p x)  y:  y  + p y ) .

di s t anceTo:  = ( |  : ar g |
( ( x -  ar g x)  squar ed +

( y -  ar g y)  squar ed)  sqr t  ) .
| ) .

aPoi nt  di s t anceTo:  ( |  x=5.  y=7.  | ) → 3. 61

Syntactic sugar: put arg name with slot name, e.g.:

val aPoi nt  =

( |  . . .

+ p = (  ( _Cl one x:  x + p x)  y :  y  + p y  ) .

di s t anceTo:  ar g = (  ( . . . +. . . )  sqr t  ) .

| ) .
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Multiple arguments

A method can take more than one argument;
just declare more than one argument slot, in order

A keyword message can have multiple keywords,
each followed by a corresponding argument expression

Example message:

aPoi nt  copyX:  newX Y:  newY

• sends the copyX: Y:  message to aPoi nt ,
with newX and newY as arguments

Example method definition:

val aPoi nt  =
( |  . . .

copyX: Y:  = ( |  : newX.  : newY.  |
( _Cl one x:  newX)  y:  newY ) .

| ) .

Alternatively, using syntactic sugar:

val aPoi nt  =
( |  . . .

copyX:  newX Y:  newY = (
( _Cl one x:  newX)  y:  newY ) .

| ) .
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Keyword message ambiguity

What should this parse as?

r 1 upper Lef t :  aPoi nt  copyX:  x Y:  y

What messages are being sent?

• upper Lef t : , copyX: , and Y:

• upper Lef t : copyX: Y:

• upper Lef t :  and copyX: Y:

• ...

Smalltalk-80: make longest message possible

• upper Lef t : copyX: Y:

• bad choice if instance variable assignments via messages

Self: uncapitalized starts a message, capitalized continues;
right-associative

• upper Lef t :  and copyX: Y:

• r 1 upper Lef t :  ( aPoi nt  copyX:  x  Y:  y) .
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A scenario

We define the first point as

val aPoi nt  =

( |  x <-  3.

y <-  4.

+ p = (  . . .  ) .

di s t anceTo:  ar g = (  . . .  ) .

copyX:  newX Y:  newY = (  . . .  ) .

“ lots of other methods for points”
| ) .

Then we make lots of other points via cloning

. . .  aPoi nt  _Cl one . . .  p1 + p2 . . .

Then we want to add a new method to all points

• but how?
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Inheritance

Support sharing of common features across objects via 
inheritance

Put shared slots (e.g. methods) in one object

• conventionally called a traits object

Put object-specific slots (e.g. data slots) into another object

• conventionally called a prototype object

Have the prototype inherit from its traits object,
via a parent slot

• mark a slot as a parent slot by putting *  after its name

• initialize the parent slot to the object being inherited from

Clone the prototype to make new “instances”

• changes to the traits object now shared by all instances

• common code can be factored across many kinds of objects

Traits themselves can have parents, and so on

• leads to usual rich inheritance hierarchies
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Example

val poi nt Tr ai t s =

( |  + p = (  . . .  ) .

di s t anceTo:  ar g = (  . . .  ) .

copyX:  newX Y:  newY = (  . . .  ) .

“ lots of other methods for points”
| ) .

val poi nt Pr ot o =

( |  x <-  0.

y <-  0.

par ent  * = poi nt Tr ai t s.
| ) .

val p1 = ( poi nt Pr ot o _Cl one x:  3)  y:  4.
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Message lookup, revisited

If send a message msg to a receiver object r cvr :

• if r cvr  has a slot named msg with contents v :

• if v  is the assignment primitive,
assign the message’s argument to the corresponding data slot

• if v  has code, invoke it

• otherwise, return v

• otherwise, look for a slot marked as a parent

• if find one,
recursively search the object referenced by the parent slot

• (later: what to do if find more than one)

• otherwise, report a message-not-understood error

If invoke a method object:

• clone the method object, to create an activation record

• initialize the clone’s formal argument slots with
the message’s actual argument objects

• evaluate the expression(s) in the method’s body

• return the result of the last expression
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self

sel f  is an implicit argument slot of every method

To what should it be initialized when the method is invoked?

• The original receiver of the message, r cvr ?

• The object containing the method slot?

• Something else?

Example:

val poi nt Tr ai t s =
( |  + = ( |  “ : sel f . ”  : p.  |

. . .  “ sel f ”  x + p x . . .  ) .
| ) .

val p1 =
( |  par ent * = poi nt Tr ai t s.  x  <-  3.  y  <-  4.  | ) .

p1 + p1
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Local slots

Methods can declare additional slots (in addition to arg slots)

These act as local variables

Example:

val poi nt Tr ai t s =
( |  . . .

r ef l ec t  = (  |  t emp <-  0 |

t emp:  x .

x :  y .

y :  t emp.

sel f  ) .

| ) .

Initializer of mutable data slot can be omitted

• defaults to nil

Example:

val poi nt Tr ai t s =
( |  . . .

r ef l ec t  = (  |  t emp |  . . .  ) .

| ) .
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Accessing local slots

Access local slots (both arguments and local variables)
using message without explicit receiver

• receiver is implicitly sel f

But local slots won’t be found if start lookup with sel f  object!

Special rule for implicit-self messages:
message lookup starts with current activation record object

• allows searching local “scopes”

To allow implicit-self messages to also be able to search sel f  
and its ancestors, e.g. to access instance variables,
the implicit sel f  argument slot is a parent slot

• if a message isn’t found in a local slot of the activation 
record, then search the receiver object, then its parents, 
etc.

• activation record inherits from (i.e. refines) the receiver!
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Example, revisited

val poi nt Tr ai t s =
( |  + = ( |  “ : sel f *. ”  : p.  |

( _Cl one x :  x + p x)  y:  y + p y ) .
| ) .

val p1 =
( |  par ent * = poi nt Tr ai t s.  x  <-  3.  y  <-  4.  | ) .

p1 + p1
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Multiple inheritance

If an object has multiple parent slots, how to do method lookup?

Many plausible options,
leading to different rules for multiple inheritance

Option 1: don’t allow more than one parent slot

• i.e., single inheritance (of implementation) only

Option 2: search all parents, recursively

• 2A: return first matching slot 

• what order to search parent slots?

• 2B: return matching slot if just one parent inherits a slot,
otherwise, report message-ambiguous error

• diamond-shaped inheritance?

• 2C: return matching slot if all parents inheriting slots inherit 
the same one, otherwise ambiguous [Self interpreter]

• children override parents?

• 2D: return matching slot of ancestor inheriting from all other 
ancestors with matching slots, otherwise ambiguous

• some parents more important than others?

• 2E: allow priorities to be given to parents (e.g., via more 
stars); return matching slot of highest-priority parent, 
otherwise ambiguous

Craig Chambers 264 CSE 505

Summary, so far

Saw syntax & semantics of

• defining objects

• assignment

• sending messages

• inheritance

Didn’t see:

• classes

• primitive types

• constructors

• static methods & variables vs. instance methods & variables

• globals

• special syntax for instance variable access vs. method calls

• control structures

• exceptions

• ...
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Class-based vs. classless programming

What are classes for? How does Self do without?

Define methods and instance variable layouts of their instances

• in Self, each object is self-describing and self-sufficient

• Self programmers use traits as a programming idiom to 
share methods (and data)

• sharing instance variable layout isn’t supported as well

Define static methods and variables

• Self programmers can define other objects, separate from 
traits, to hold these methods and variables

Define constructors

• Self programmers can define “creating” methods,
using _Clone, in the objects holding other static methods

Allow inheritance from other classes

• in Self, objects inherit directly from other objects
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Benefits of classless model

Much simpler language!

Avoids meta-regress problem and metaclasses

In Smalltalk:

• every object has a class

• every class is an object

• what’s the class of a class? what’s its class? etc.

Singleton (one-of-a-kind) objects are natural

• no special design pattern or other hacks needed

Objects can inherit interesting state from other objects

An object’s parent slot can be mutable,
allowing its parent to be changed at run-time

• called dynamic inheritance

• elegant alternative to e.g. chain-of-responsibility & strategy 
patterns
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Benefits of uniform messaging

Traditionally, instance variables and methods are accessed 
differently

Self accesses them both via messages

• difference is in target slot, not form of message

Benefits:

• hide implementation choice from external clients

• can easily change between stored state and computed results

• inheriting objects can make different choices

• can override data with code, and vice versa

Self’s syntax makes messages just as concise as variable 
accesses

• benefits regular messages, too

C# properties are a clumsy version of uniform messaging
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Benefits of uniform objects

Primitive values (3, t r ue, ni l , ' hi ' ) are first-class objects

• inherit from predefined traits objects for their behavior

• programmers can add their own methods to these traits

Manipulated by sending them messages, just like other objects

To allow “natural” notation, infix operators are allowed,
treated as binary messages

• programmers can define their own operator messages

• but not precedence

• subsumes “operator overloading” of other languages

C# “auto-boxing” of primitives crudely approximates primitives 
as first-class objects
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First-class functions

Self supports first-class, lexically-nested, anonymous functions
called blocks

• blocks are objects, inheriting from their own predefined 
traits object

Written like a method, but using [ . . . ]  instead of ( . . . )

Examples:

[  ' hi  t her e'  pr i nt Li ne.  ]

[ |  : ar g1.  : ar g2.  |  ar g1 + ar g2 ]

Block doesn’t execute until invoked

Invoke a block by sending it a val ue message with the right 
number of arguments

• 0 arguments: send val ue

• 1 argument: send val ue:

• 2 arguments: send val ue: Wi t h:

• 3 arguments: send val ue: Wi t h: Wi t h:

• etc.

Craig Chambers 270 CSE 505

Lexical scoping

Blocks can be written inside other methods (or blocks)

Nested block can access local slots of lexically enclosing 
method/block

Implemented by storing a reference to the lexically enclosing 
activation record when the block object is created (a closure!)

• when the block is invoked, the reference is stored into a 
parent slot in the block method’s activation record

• (no sel f  slot in a block activation record;
sel f  inherited from lexically enclosing method)

Lexical scoping is just inheritance!
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Control structures using blocks

Self has no built-in control structures!

Instead, dynamically dispatched methods and blocks are used 
to program control structures

Example:

val t r ue = ( |

par ent * = bool Tr ai t s.

i f Tr ue:  t r ueBl ock Fal se:  f al seBl ock = (
t r ueBl ock val ue ) .

| ) .

val f al se = ( |

par ent * = bool Tr ai t s.

i f Tr ue:  t r ueBl ock Fal se:  f al seBl ock = (
f al seBl ock val ue ) .

| ) .

. . .

( x ! = 0)  i f Tr ue:  [  y/ x ]  Fal se:  [  - 1 ]

Many methods in bool Tr ai t s , in terms of i f Tr ue: Fal se:
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More basic control structures

Implemented in bool Tr ai t s :

t est  i f Tr ue:  [ t r ueCode]

t est  i f Fal se:  [ f al seCode]

t est  and:  [ t est 2]

t est  or :  [ t es t 2]

Implemented in bl ockTr ai t s :

[ body ]  l oop

[ t es t ]  whi l eTr ue:  [ body ]

[ body ]  unt i l Fal se:  [ t est ]
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Iterators

ML provides higher-order operations over lists, e.g. map, fold

But OO languages offer many different kinds of collections

• lists, strings, association lists, ...

Provide family of iterator methods for each kind of collection

Most basic iterator: col l  do:  [ | : el em|  . . . ]

E.g.: l s t  do:  [ | : el em|  el em pr i nt Li ne. ] .

Others:

• col l  doWi t hI ndexes:  [ | : i ndex .  : el em. |  . . . ]

• col l  mapBy:  [ | : el em|  . . . ]

For association lists:

• assocLst  keysAndVal uesDo:  [ | : key .  : val ue. |  
. . . ]
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Non-local returns

In some cases, want to exit early from a loop

• e.g. br eak  or r et ur n inside loop body

In Self, implement all early exiting using non-local returns

• ^ expr  as last statement in a block’s body

• causes immediate return from lexically enclosing method

Example:

val col l ec t i onTr ai t s = ( |

. . .

i nc l udes:  el em = (

do:  [ | : e|

e == el em i f Tr ue:  [

“ we found it, so exit loop now, returning true”

^ t r ue] .

] .

“ didn’t find it, so return false”

f al se ) .

| ) .

A limited form of cal l / cc  or exception
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Exceptions using blocks

Use blocks in place of exceptions

• in place of handler, client passes in a block

• in place of throw, callee invokes block

Example:

val assocLi st Tr ai t s  = ( |  . . .

at :  key I f Absent :  absent Bl ock = (

keysAndVal uesDo:  [ | : k. : v. |

k == key i f Tr ue:  [

“ we found it, so exit loop now, returning value”

^ v] .

] .

“ didn’t find it, so invoke and return absent block”

absent Bl ock val ue ) .

| ) .

Client can control whether exception is terminal or not:

. . .  t abl e at :  key I f Absent :  [ def aul t Val ue]  . . .

. . .  t abl e at :  key I f Absent :  [ ^ r esul t ]  . . .

. . .  t abl e at :  key I f Absent :  [ er r or :  ' . . . ' ]  . . .
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Top-level environment

When running the read-eval-print loop, “implicit self” is the 
distinguished gl obal s  object

• represents the top-level global namespace

• its slots are the global names

By convention, all traits objects inherit (directly or indirectly) from 
obj ect Tr ai t s

• defines cl one, ==, pr i nt St r i ng, pr i nt Li ne, ... 
methods

obj ect Tr ai t s  in turn inherits from gl obal s

• gives all (normal) code access to global names

• again, inheritance for lexical scoping!
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Programming primitives

Self includes primitives to add or change slots of objects

obj  _AddSl ot s :  ( |  s l ot s | ) .

• evaluates obj  and s l ot s , then adds all the sl ot s  to obj

• changes any that already exist in obj

• leaves any other slots in obj  alone

obj  _AddSl ot s I f Absent :  ( |  s l ot s  | ) .

• evaluates obj  and s l ot s , then
adds any new sl ot s  to obj

• leaves alone any slots that already exist in obj

obj  _Def i neSl ot s :  ( |  sl ot s  | ) .

• evaluates obj  and s l ot s , then makes obj  contain only 
s l ot s

• any other slots in obj  removed

No val  declaration in Self; instead use these primitives, e.g.

gl obal s  _AddSl ot sI f Absent :  ( |
poi nt Tr ai t s = ( ) .  | ) .

poi nt Tr ai t s _Def i neSl ot s :  ( |  . . .  | ) .


