Formal Semantics

Why formalize?

- some language features are tricky, e.g. generalizable type variables, nested functions
- some features have subtle interactions,
e.g. polymorphism and mutable references
- some aspects often overlooked in informal descriptions,
e.g. evaluation order, handling of errors

Want a clear and unambiguous specification that can be used by language designers and language implementors (and programmers when necessary)

Ideally, would allow rigorous proof of

- desired language properties, e.g. safety
- correctness of implementation techniques

Approach

Formalizing \& proving properties about a full language is very hard, very tedious

- many, many cases to consider
- lots of interacting features

Better approach:
boil full-sized language down into its essential core, then formalize and study the core

- cut out much of the complication as possible, without losing the key parts that need formal study
- hope that insights gained about the core carry over to the full language

Can study language features in stages:

- a very tiny core
- then extend with an additional feature
- then extend again (or separately)

Aspects to formalize

Syntax: what's a syntactically well-formed program?

- formalize by a context-free grammar, e.g. in EBNF notation

Static semantics:

which syntactically well-formed programs are also
semantically well-formed?

- i.e., name resolution, type checking, etc.
- formalize using typing rules, well-formedness judgments

Dynamic semantics:

to what does a semantically well-formed program evaluate?

- i.e., run-time behavior of a type-correct program
- formalize using operational, denotation, and/or axiomatic semantics rules

Metatheory:

what are the properties of the formalization itself?

- e.g., is static semantics sound w.r.t. dynamic semantics?

Craig Chambers
165

Lambda calculus

The tiniest core of a functional programming language

- Alonzo Church, 1930s

The foundation for all formal study of programming languages

Outline of study:

- untyped λ-calculus:
syntax, dynamic semantics, properties
- simply typed λ-calculus:
also static semantics, soundness
- standard extensions to λ-calculus:
syntax, dynamic semantics, static semantics
- polymorphic λ-calculus:
syntax, dynamic semantics, static semantics

Untyped λ-calculus: syntax

Syntax:

function / abstraction call / application variable
[That's it!]

Application binds tighter than .
Can freely parenthesize as needed

Example (with minimum parens):
($\left.\lambda \mathrm{x} . \lambda_{\mathrm{y}} . \mathrm{x} y\right) \lambda_{\mathrm{z}} \mathrm{z}$

ML analogue (if ignore types):
(fn $x=>(\boldsymbol{f} \boldsymbol{f} y=>x y)$) (fn $z=>z)$

Trees described by this grammar are called term trees

α-renaming

First semantic property of λ-calculus:
a bound variable in a term tree (and all its references) can be renamed without affecting the semantics of the term tree

- cannot rename free variables

Precise definition:
α-equivalence: $\lambda I_{1} \cdot E \Leftrightarrow \lambda I_{2} .\left[I_{2} / I_{1}\right] E \quad$ (if $I_{2} \notin F V(E)$)
[$\left.E_{2} / I\right] E_{1}$: substitute all free occurrences of I in E_{1} with E_{2}

- (formalized soon)

Since names of bound variables "don't matter", it's convenient to treat all α-equivalent term trees as a single term

- define all later semantics for terms
- can assume that all bound variables are distinct
- for any particular term tree, do α-renaming to make this so

Free and bound variables

$\lambda I . E$ binds I in E

An occurrence of a variable I is free in an expression E if it's not bound by some enclosing lambda in E
$F V(E)$: set of free variables in E
$F V(I)=\{I\}$
$F V(\lambda I . E)=F V(E)-\{I\}$
$F V\left(E_{1} E_{2}\right)=F V\left(E_{1}\right) \cup F V\left(E_{2}\right)$
$F V(E)=\varnothing \Leftrightarrow E$ is closed

Evaluation, β-reduction

Define how a λ-calculus program "runs" via a set of rewrite rules, a.k.a. reductions

- " $E_{1} \rightarrow E_{2}$ " means " E_{1} reduces to E_{2} in one step"

One rule: $\left(\lambda I . E_{1}\right) E_{2} \rightarrow\left[E_{2} / I\right] E_{1}$

- "applying a function to an argument expression reduces to the function's body after substituting the argument expression for the function's formal"
- this rule is called the β-reduction rule

Other rules state that the β-reduction rule can be applied to nested subexpressions, too

- (formalized later)

Define how a λ-calculus program "runs" to compute a final result as the reflexive, transitive closure of one-step reduction

- " $E \rightarrow{ }^{*} V$ " means " E reduces to result value V "
- (formalized later)

That's it!

Craig Chambers

Examples

Normal forms

$E \rightarrow{ }^{*} V: E$ evaluates fully to a value V

- \rightarrow^{*} defined as the reflexive, transitive closure of \rightarrow

What is V ?
an expression with no opportunities for β-reduction

- such expressions are called normal forms

Can define formally:
$V \quad::=\lambda I . V$
I V
(l.e., any E except one containing ($\left.\lambda I . E_{1}\right) E_{2}$ somewhere)

Q: does every λ-calculus term have a normal form?
Q: is a term's normal form unique?

Substitution

Substitution is suprisingly tricky

- must avoid changing the meaning of any variable reference, in either substitutee or substituted expressions
- "capture-avoiding substitution"

Define formally by cases, over the syntax of the substitutee:

- identifiers:

$$
\begin{aligned}
& {\left[E_{2} / I\right] I=E_{2}} \\
& {\left[E_{2} / I\right] J=J \quad(\text { if } J \neq I)}
\end{aligned}
$$

- applications:

$$
\left[E_{2} / I\right]\left(E_{1} E_{3}\right)=\left(\left[E_{2} / I\right] E_{1}\right) \quad\left(\left[E_{2} / I\right] E_{3}\right)
$$

- abstractions

$$
\begin{aligned}
{\left[E_{2} / I\right](\lambda I \cdot E) } & =\lambda I \cdot E \\
{\left[E_{2} / I\right](\lambda J \cdot E) } & =\lambda J \cdot\left[E_{2} / I\right] E \\
(\text { if } J & \left.\neq I \text { and } J \notin F V\left(E_{2}\right)\right)
\end{aligned}
$$

- use α-renaming on ($\lambda J . E$) to ensure $J \notin F V\left(E_{2}\right)$

Defines the scoping rules of the λ-calculus

Reduction order

Can have several places in an expression where a lambda is applied to an argument

- each is called a redex

$$
(\lambda \mathrm{x} \cdot(\lambda \mathrm{y} \cdot \mathrm{x}) \mathrm{x}) \quad\left((\lambda \mathrm{z} \cdot \mathrm{z}) \quad\left(\lambda_{\mathrm{w}} \cdot(\lambda \mathrm{v} \cdot \mathrm{v}) \mathrm{w}\right)\right)
$$

Therefore, have a choice in what reduction to make next

Which one is the right one to choose to reduce next?

Does it matter?

- to the final result?
- to how long it takes to compute it?
- to whether the result is computed at all?

Some possible reduction strategies

Example:

$$
\left(\lambda \mathrm{x} \cdot\left(\lambda_{\mathrm{y}} \cdot \mathrm{x}\right) \quad \mathrm{x}\right) \quad\left(\left(\lambda_{\mathrm{z}} \cdot \mathrm{z}\right) \quad\left(\lambda_{\mathrm{w}} \cdot\left(\lambda_{\mathrm{v}} \cdot \mathrm{v}\right) \mathrm{w}\right)\right)
$$

normal-order reduction:
always choose leftmost, outermost redex

- call-by-name, lazy evaluation:
same, and ignore redexes underneath λ
applicative-order reduction:
always choose leftmost, outermost redex
whose argument is in normal form
- call-by-value, eager evaluation:
same, and ignore redexes underneath λ

Again, does it matter?

- to the final result?
- to how long it takes to compute it?
- to whether the result is computed at all?

Existence of normal form?

Does every term have a normal form?

- (If it does, we already know it's unique)

Consider:

($\lambda \mathrm{x} . \mathrm{x}$ x) ($\lambda \mathrm{x} . \mathrm{x} \mathrm{x}$)

Amazing fact \#1: Church-Rosser Thm., Part 1

Thm (Confluence). If $e_{1} \rightarrow^{*} e_{2}$ and $e_{1} \rightarrow^{*} e_{3}$, then $\exists e_{4}$ s.t. $e_{2} \rightarrow^{*} e_{4}$ and $e_{3} \rightarrow^{*} e_{4}$.

Corollary (Normalization). Every term has a unique normal form, if it exists

- No matter what reduction order is used!

Proof? [e.g. by contradiction]

Amazing fact \#2: Church-Rosser Thm., Part 2

Thm. If a term has a normal form, then normal-order reduction will find it!

- applicative-order reduction might not!

Example:

$$
(\lambda x \cdot(\lambda y \cdot y)) \quad((\lambda z \cdot z \quad z) \quad(\lambda z \cdot z \quad z))
$$

Same example, but using abbreviations:

$$
\begin{aligned}
& \text { id } \equiv(\lambda \mathrm{y} \cdot \mathrm{y}) \\
& \text { loop } \equiv((\lambda \mathrm{z} \cdot \mathrm{z} \mathrm{z}) \quad(\lambda \mathrm{z} \cdot \mathrm{z} \mathrm{z})) \\
& (\lambda \mathrm{x} \cdot \mathrm{id}) \text { loop }
\end{aligned}
$$

(Abbreviations are not really in the λ-calculus; expand away textually before evaluating)

Q: How can I tell whether a term has a normal form?

Amazing fact \#3: λ-calculus is Turing-complete!

Can translate any Turing machine program into an equivalent λ-calculus program, and vice versa

But how?
λ-calculus lacks:

- functions with multiple arguments
- numbers and arithmetic
- booleans and conditional branches
- data structures
- local variables
- recursive definitions and loops

All it's got are one-argument, non-recursive functions...

Church numerals

Encode natural numbers using stylized λ terms

```
zero \(\equiv(\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{z}) \quad \equiv\left(\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{s}^{0} \mathrm{z}\right)\)
one \(\equiv(\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{s} \mathrm{z}) \quad \equiv\left(\lambda \mathrm{s} \cdot \lambda \mathrm{z} \cdot \mathrm{s}^{1} \mathrm{z}\right)\)
\(t w o \equiv(\lambda s . \lambda z . s(s z)) \equiv\left(\lambda s . \lambda z \cdot s^{2} z\right)\)
...
\(\bar{N} \equiv\left(\lambda s \cdot \lambda z \cdot s^{N} z\right)\)
```

(\bar{N} is the λ-calculus encoding of the mathematical number N)

A unary representation of numbers,
but one that can be used to do computation

- a "number" \bar{N} is a function that applies a "successor" function (s) N times to a "zero" value (z)

Multiple arguments, via currying

Encode multiple arguments by currying

$$
\begin{array}{ll}
\lambda(X, Y) \cdot E & \Rightarrow \lambda X \cdot(\lambda Y \cdot E) \\
E\left(E_{1}, E_{2}\right) & \Rightarrow \quad\left(E E_{1}\right) E_{2}
\end{array}
$$

Multiple arguments can be had via a syntactic sugar, so they're not essential, and they can be dropped from the core language

Arithmetic on Church numerals

A basic arithmetic function: succ

- succ $\bar{N} \rightarrow{ }^{*} \overline{N+1}$

Definition:

```
succ \equiv(\lambdan. \lambdas.\lambdaz.s (n s z))
```


Examples:

```
succ zero
    =(\lambdan.\lambdas.\lambdaz.s (n s z)) (\lambda\mp@subsup{s}{}{\prime}.\lambda\mp@subsup{z}{}{\prime}.\mp@subsup{\textrm{z}}{}{\prime})
    ->(\lambdas.\lambdaz.s ((\lambda\mp@subsup{s}{}{\prime}.\lambda\mp@subsup{z}{}{\prime}.\mp@subsup{z}{}{\prime})}\textrm{s
    ->(\lambdas.\lambdaz.s ((\lambdaz'. z') z))
    ->(\lambdas.\lambdaz.s z) = one
succ two
    = (\lambdan.\lambdas.\lambdaz.s (n s z)) (\lambda\mp@subsup{s}{}{\prime}.\lambda\mp@subsup{z}{}{\prime}.\mp@subsup{s}{}{\prime}
    ->(\lambdas.\lambdaz.s ((\lambda\mp@subsup{s}{}{\prime}.\lambda\mp@subsup{z}{}{\prime}.\mp@subsup{s}{}{\prime}}(\mp@subsup{s}{}{\prime}\mp@subsup{z}{}{\prime})) s z)
    ->(\lambdas.\lambdaz.s ((\lambda\mp@subsup{z}{}{\prime}.s (s z')) z))
    ->(\lambdas.\lambdaz.s (s (s z))) = three
```


Addition

Another basic arithmetic function: add

- add $\bar{X} \bar{Y} \rightarrow^{*} \overline{X+Y}$

Algorithm: to add \bar{X} to \bar{Y}, apply succ to $\bar{Y} X$ times

Key trick: \bar{X} is a function that applies its first argument to its second argument X times

- "a number is as a number does"

Definition:

```
add \equiv(\lambdax.\lambday.x succ y)
```


Example:

```
add two three = (\lambdax.\lambday.x succ y) two three
    ->* two succ three = ( \lambdas.\lambdaz.s (s z)) succ three
    ->* succ (succ three)
    ** five
```

(pred is tricky, but doable; sub then is similar to add)

Booleans and conditionals

How to make choices? We only have functions...

Key idea:
true and false are encoded as functions that work differently

- call the boolean value to control evaluation

```
true \equiv (\lambdat.\lambdae.t)
false \equiv (\lambdat.\lambdae.e)
if \equiv (\lambdab.\lambdat.\lambdae.b t e)
```


Example:

```
if false loop three
    = (\lambdab.\lambdat.\lambdae.b t e) false loop three
    ->* false loop three = (\lambdat.\lambdae.e) loop three
    ->* three
```


Multiplication

Another basic arithmetic function: mul

- mul $\bar{X} \bar{Y} \rightarrow^{*} \overline{X^{*} Y}$

Testing numbers

To complete Peano arithmetic, need an isZero predicate

- isZero $\bar{N} \rightarrow{ }^{*} \overline{N=0}$

Idea: implement by calling the number on a successor function that always returns false and a zero value that is true

Definition:

$$
\text { isZero } \equiv(\lambda \mathrm{n} . \mathrm{n} \text { (} \lambda \mathrm{x} . \text { false) true) }
$$

Examples:

$$
\begin{aligned}
& \text { isZero zero }=(\lambda \mathrm{n} . \mathrm{n}(\lambda \mathrm{x} . \text { false }) \text { true }) \text { zero } \\
& \rightarrow\left(\lambda s^{\prime} \cdot \lambda z^{\prime} \cdot \mathrm{z}^{\prime}\right)(\lambda \mathrm{x} . \text { false }) \text { true } \\
& \\
& \rightarrow{ }^{*} \text { true } \\
& \text { isZero two }=(\lambda \mathrm{n} . \mathrm{n}(\lambda x . f a l s e) \text { true }) \text { two } \\
& \rightarrow\left(\lambda s^{\prime} \cdot \lambda z^{\prime} \cdot s^{\prime}\left(s^{\prime} \mathrm{z}^{\prime}\right)\right)(\lambda x . f a l s e) \text { true } \\
& \rightarrow(\lambda x . f a l s e)((\lambda x . f a l s e) \text { true }) \\
& \rightarrow \text { false }
\end{aligned}
$$

Data structures

E.g., pairs

Idea: a pair is a function that remembers its two parts (via lexical scoping \& closures)

- pair function takes a selector function that's passed both parts and then chooses one

```
pair \equiv (\lambdaf.\lambdas.\lambdab.b f s)
fst \equiv (\lambdap.p (\lambdaf.\lambdas.f))
snd \equiv(\lambdap.p (\lambdaf.\lambdas.s))
```


Examples:

```
pair true four = ( }\lambda\textrm{f}.\lambda\textrm{\lambdas.
    ** (\lambdab.b true four)
```



```
    (pair true four) ( }\lambda\textrm{f}.\lambda\textrm{l}.\textrm{s}
    ->* (\lambdab.b true four) ( }\lambda\textrm{f}.\lambda\textrm{s}.\textrm{s}
    ->(\lambdaf.\lambdas.s) true four
    ** four
```


Loops and recursion

We've seen that we can write infinite loops in the λ-calculus
loop $\equiv((\lambda z . z \quad z) \quad(\lambda z . z \quad z))$

Can we write useful loops?
l.e., can we write recursive functions?

The let encoding won't work, as we saw

How about this?

```
fact \equiv (\lambdan.
    if (isZero n) one
        (mul n (fact (pred n))))
```


Local variables

Encode let using functions

```
let I = E E in E E | (\lambdaI.E E ) E 1
```

Example:

```
    let x = one in
        let y = two in
            add x y
#
    (\lambdax.(\lambday.add x y) two) one
```

Doesn't handle recursive declarations, though:

```
    let fact = ... fact ... in
        fact two
#
    (\lambdafact.fact two) (... fact ...)
```


Amazing fact \#4:

Can define recursive functions non-recursively!

Step 1: replace the bogus recursive reference with an explicit argument
fact $G \equiv$ (λ fact. λ_{n}.
if (isZero n) one (mul n (fact (pred n))))

Step 2: use the "paradoxical Y combinator" to pass fact G to itself in a funky way to yield plain fact
fact $\equiv(Y$ fact $G)$

Now all we have to do is write Y in the raw λ-calculus

The Y combinator

A definition of Y :

$$
Y \equiv(\lambda f .(\lambda x . f \quad(x \quad x)) \quad(\lambda x . f \quad(x \quad x)))
$$

Example:

$$
\begin{array}{rl}
Y & f G=\left(\lambda f .(\lambda x . f(x x))\left(\lambda x^{\prime} . f\left(x^{\prime} x^{\prime}\right)\right)\right) f G \\
& \rightarrow(\lambda x \cdot f G(x x))\left(\lambda x^{\prime} . f G\left(x^{\prime} x^{\prime}\right)\right) \\
& \left.\rightarrow f G\left(\left(\lambda x^{\prime} . f G\left(x^{\prime} x^{\prime}\right)\right)\left(\lambda x^{\prime} . f G\left(x^{\prime} x^{\prime}\right)\right)\right)\right) \\
& f G(Y f G)
\end{array}
$$

So: ($Y f G$) reduces to a call to $f G$, whose argument is an expression that, if evaluated inside $f G$, will reinvoke $f G$ again with the same argument

- normal-order evaluation will only reduce "recursive" argument ($Y f G$) on demand, as needed

Letrec

Can now define a recursive version of let:
letrec $I=E_{1}$ in $E_{2} \Rightarrow$ let $I=Y\left(\lambda I . E_{1}\right)$ in E_{2} - can now reference I recursively inside E_{1}

Example:

letrec
fact $=(\lambda n$. if (isZero n) one (mul n (fact (pred n))))
in
... fact...

Example

A concrete example:

```
factG }\equiv\mathrm{ ( }\lambda\mathrm{ fact. }\mp@subsup{\lambda}{n}{n}
    if (isZero n) one
        (mul n (fact (pred n))))
fact }\equiv(Y factG
(* Y fG ->* fG ( Y fG) *)
fact two = Y factG two
    ->* factG (Y factG) two
    ** if (isZero two) one
            (mul two ((Y factG) (pred two)))
    ->* mul two ((Y factG) (pred two))
```

[doing some applicative-order reduction, for simplicity]

```
->* mul two (factG (Y factG) one)
** mul two
            (if (isZero one) one
                (mul one ((Y factG) (pred one))))
** mul two
            (mul one ((Y factG) (pred one)))
->* mul two (mul one
            (if (isZero zero) one (mul zero ...)))
->* mul two (mul one one) }\mp@subsup{->}{}{*}\mathrm{ two
```


Summary, so far

Saw untyped λ-calculus

Saw α-renaming, β-reduction rules

- both relied on capture-avoiding substitution
- α-renaming defined families of equivalent term trees
- name choice of formals doesn't matter to semantics
- β-reduction defined "evaluation" of a λ-calculus "program"
- normal forms: no more β-reduction possible the "results" of a "program"
- reduction strategies such as normal-order \& applicative-order had different termination properties, but not different results

Church-Rosser: key confluence \& normalization thms.

Turing-completeness of untyped λ-calculus suggested by successfully encoding many standard PL features

