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Haskell

Many similarities with ML

• functions are first-class values

• strongly, statically typed

• polymorphic type system

• automatic type inference

• expression-oriented, recursion-oriented

• garbage-collected heap

• pattern matching

• highly regular and expressive

Key differences:

• lazy evaluation instead of eager evaluation

• purely side-effect-free

• modads for controlled side-effects, I/O, etc.

• type classes for more flexible polymorphic typechecking

• simpler module system

• some interesting syntactic clean-ups and conveniences

Main design completed in 1992, by a committee,
to unify many earlier lazy functional languages

• most recent version: Haskell 98
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Some syntactic differences with ML

ML:

- fun map f  ni l  = ni l
|  map f  ( x: : xs)  = f  x : :  map f  xs;

val  map = f n :  ( ' a- >' b)  - > ' a l i s t  - > ' b l i st

- val l st  = map squar e [ 3, 4, 5] ;

[ 9, 16, 25]  :  i nt  l i s t

- ( 3,  4,  fn x  y => x+y)

( 3, 4, f n)  :  i nt  *  i nt  *  ( i nt - >i nt - >i nt )

Haskell (decls vs. exprs & output depends on implementation):

map f  [ ]  = [ ]
map f  ( x: xs)  = f  x :  map f  xs

<f n> : :  ( a- >b)  - > [ a]  - > [ b]

l s t  = map squar e [ 3, 4, 5]

[ 9, 16, 25]  : :  [ I nt eger ]

( 3,  4,  \ x y - > x+y)

( 3, 4, <f n>)  : :  ( I nt eger ,  I nt eger ,
I nt eger - >I nt eger - >I nt eger )
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More examples

ML:

- datatype ' a Tr ee =
Empt y |  Node of  ' a *  ' a Tr ee *  ' a Tr ee;

- fun s i ze Empt y = 0
|  s i ze ( Node( _, t 1, t 2) )  = 1+s i ze t 1+s i ze t 2;

- Node( 3, Empt y, Empt y) ;

Node( 3, Empt y, Empt y)  :  i nt  Tr ee

Haskell:

data Tr ee a = Empt y |  Node a ( Tr ee a)  ( Tr ee a)

s i ze Empt y = 0

s i ze ( Node _ t 1 t 2)  = 1 + s i ze t 1 + si ze t 2

Node 3

<f n> : :
Tr ee I nt eger  - > Tr ee I nt eger  - > Tr ee I nt eger

s i ze ( Node 4 ( Node 3 Empt y Empt y)  Empt y)

2 : :  I nt eger
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General syntactic principles

Expressions and types use similar syntax

• ( 3, " hi " )  : :  ( I nt , St r i ng)

• [ 3, 4, 5]  : :  [ I nt ]

Upper-case letters for constructor constants and known types

Lower-case letters for variables and type variables

Functions and variables defined in same way,
with no leading keyword

• variables have no arguments

• functions have 1 or more arguments

Uniform use of curried functions,
including infix operators and data constructors

Type constructors use prefix notation, just like other functions

Layout & indentation are significant,
and imply grouping and nesting

• can use {  . . .  }  to explicitly control grouping
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Sections

Can call an infix operator on 0 or 1 of its arguments to create a 
curried function that takes the remaining argument(s)

3 + 4

7 : :  I nt eger

( +)

<f n> : :  I nt eger  - > I nt eger  - > I nt eger

( + 1) - -  the increment function

<f n> : :  I nt eger  - > I nt eger

( 1 / ) - -  the inverse function

<f n> : :  Doubl e - > Doubl e

Parentheses convert an infix operator into a prefix fn expression

Can treat a prefix fn name as an infix operator 
by bracketing with backquotes

6 ‘ di v ‘  2

3 : :  I nt eger
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List comprehensions

Nice syntax for constructing a list from generators and guards:

[  expr |  var <-  expr,  ...,  boolExpr,  ... ]

[  f  x |  x <-  xs ] - -  map f  xs  

[  ( x , y)  |  x <-  xs,  y <-  ys ]  - -  z i p xs  ys

[  y  |  y <-  ys,  y  > 10 ] - -  f i l t er  ( > 10)  ys

qui cksor t  [ ]  = [ ]

qui cksor t  ( x: xs)  = qui cksor t  [ y |  y<- xs,  y<x]
++ [ x ]
++ qui cksor t  [ y  |  y<- xs,  y>=x]

Arithmetic sequences easy to construct, too

[ 1. . 10] → [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

[ 2, 4. . 10] → [ 2, 4, 6, 8, 10]

[ 2, 4. . ] → [ 2, 4, 6, 8, 10, 12, . . .

[ 1. . ] → [ 1, 2, 3, 4, 5, 6, 7, . . .
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Lazy vs. eager evaluation

When is a function argument evaluated?

• eager, applicative-order, strict:
before passing value to function

• lazy, normal-order, nonstrict, call-by-need, demand-driven:
when/if first needed

When is an expression’s value needed?

• when it’s being called as a function

• when it’s being used as the test of an i f

• when it’s an operand of + (or some other primitive that can’t 
compute its result without looking at the value of its 
argument)

• when it’s being pattern-matched against
(but then only enough to get the constructor tag;
the components don’t need to be evaluated until they’re 
needed)

• if it’s the final result of the program

When is an expression not needed?

• when it’s not used

• when it’s just bound to another variable, e.g. a formal

• when it’s an argument of a data constructor
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Example

my_i f  t est  t hen_val  el se_val  =
if t es t  then t hen_val  else el se_val

my_i f  Tr ue 3 4 → 3

my_i f  Fal se 3 4 → 4

x  = 3

y = 12

my_i f  ( x / = 0)  ( y ‘ di v ‘  x)  ( - 1) → 4

- -  different than in ML or Scheme!

A call to my_i f  doesn’t evaluate its arguments first

The test is always evaluated, since it’s needed to progress

Either the t hen_val  or the el se_val  is evaluated,
but not both

Needed “special form” in Scheme & ML to achieve this

Unnecessary in a lazy language
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Issues with lazy evaluation

Only computations needed for getting the result need to be 
evaluated

• can avoid useless work

• can write programs that look inefficient but need not be

• generator + transformer style

• “infinite” data structures,
of which only a finite amount is ever actually used

Can always replace variable with defined expression
� better equational reasoning

Evaluation order depends on what caller of function demands
� hard to determine

• disallow side-effects, I/O, exceptions, etc.
in (lazy) expressions

• use monads at outer level to get effects, in a specific order
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Streams

Lists can be viewed as (possibly infinite) streams of values

• head, t ai l  fields of a list structure won’t be evaluated
until & unless they’re demanded

Lazy evaluation holds for all data structures in same way

- -  an infinite list of ascending integers, starting with n:
i nt s_f r om n = n :  i nt s_f r om ( n + 1)

- -  shorthand: [ n. . ]

- -  the natural numbers:
nat s  = i nt s_f r om 0 - -  shorthand: [ 0. . ]

- -  the perfect squares:
squar es = map ( ^  2)  nat s

→ [ 0,  1,  4,  9,  16,  25,  . . .

- -  the fibonacci numbers:
f i bs  = 0 :  1 :

[  a+b |  ( a, b)  <-  z i p f i bs ( t ai l  f i bs) ]

→ [ 0,  1,  1,  2,  3,  5,  8,  13,  21,  34,  55,  . . .
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Simulating streams using first-class functions

Can simulate streams by wrapping lazy part(s) in function(s)

E.g. a lazy list: pair of functions to produce the head and the tail 
on demand

- datatype ' a l azy_l i st  =

= l azy_ni l  |

= l azy_cons of ( uni t  - > ' a)  *

= ( uni t  - > ' a l azy_l i s t ) ;

- fun l azy_hd( l azy_cons( f h, _) )  = f h( ) ;

val  l azy_hd = f n :  ' a l azy_l i s t  - > ' a

- fun l azy_t l ( l azy_cons( _, f t ) )  = f t ( ) ;

val  l azy_t l  = f n :  ' a l azy_l i st  - > ' a l azy_l i st

- fun f i r s t ( 0,  _)  = [ ]

= |  f i r s t ( n,  l azy_cons( f h, f t ) )  =

= f h( )  : :  f i r st ( n- 1,  f t ( ) ) ;

val  f i r st  = f n :  i nt  *  ' a l azy_l i st  - > ' a l i st
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A client

- fun i nt s_f r om n =

= l azy_cons( f n( ) =>n,  f n( ) =>i nt s_f r om( n+1) ) ;

val  i nt s_f r om = f n :  i nt  - > i nt  l azy_l i st

- val nat s  = i nt s_f r om 0;

val  nat s = l azy_cons( f n, f n)  :  i nt  l azy_l i s t

- val s i ngl e_di gi t s  = f i r st ( 10,  nat s) ;

[ 0, 1, . . . , 9]  :  i nt  l i s t

Will re-evaluate body of function each time head/tail of a 
particular lazy list is referenced, unlike real lazy evaluation

• Scheme builds in del ay  and f or ce to avoid this

Have to have multiple versions of list operations like map, f ol d, 
etc., for eager vs. lazy lists, unlike real lazy evaluation
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Generators and transformers

Programming style exploiting lazy evaluation,
leading to more reusable components

Construct a toolkit of operations to generate interesting streams

• lots of list processing functions, e.g.
mapping & filtering & combining & (un)zipping streams

• scanner produces a stream of tokens

• input produces a stream of characters

• event-driven simulations produce streams of events

• ....

Don’t worry about controlling how much to generate;
generate everything that might possibly be useful

Independently produce operations to manipulate and extract 
interesting subset of generated data

• only portion needed in final result will actually be generated
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Example

Implement scanner as a generator of a stream of tokens

Implement utility that checks which functions have been 
changed since last compile

• generate streams of tokens on both versions

• compares two streams to find difference

• if difference found, rest of tokens won’t be demanded, 
therefore won’t be generated

Implement parser to produce a stream of possible parses,
if grammar has type-dependent ambiguities (like C++)

• consumes stream of tokens, until first syntax error

Implement typechecker to
consume possible parse trees,
filter for those that typecheck
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I/O

How can a purely functional program interact with the outside 
world, e.g. read any (mutable) input or produce any output?

Idea:

• introduce a special I O type,
whose values are I/O actions that could be performed

• top-level mai n function yields an I/O action,
which is performed only “when main returns”

• but lazy evaluation makes this happen “as soon as possible”

I O data type is a special case of a monad

• very powerful mechanism for controlling & encapsulating 
effects of many sorts, including mutable state, 
exceptions, resource consumption, etc.
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IO actions

I O a: the type of actions that have some I/O effect and then 
yield a value of type a

mai n : :  I O ( )

• mai n returns an I/O action that has no result

• the system runs a program by demanding the result of main, and 
executing the actions that are computed

Some basic I/O actions:

• get Char  : :  I O Char

• put Char  : :  Char  - > I O ( )

• openFi l e : :  St r i ng - > I OMode - > I O Handl e

• hCl ose : :  Handl e - > I O ( )

• s t di n,  st dout  : :  I O Handl e

• hGet Char  : :  Handl e - > I O Char

• hPut Char  : :  Handl e - > Char  - > I O ( )

• hGet Cont ent s : :  Handl e - > I O St r i ng

A no-op action:
r et ur n expr  : :  I O t ypeOf Expr

• does no I/O but yields a value
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Composite actions

Can combine actions together, in sequences:

do v1 <- act i on1

v2 <- act i on2

. . .
act i onn

• yields an action that, if performed,
first performs act i on1, binding the result value to v1,
then peforms act i on2, binding the result value to v2,
...,
then performs act i onn and returns its result value

• any of the v i  are optional

Example: a program that copies its input to its output, twice

hPut St r i ng : :  Handl e - > St r i ng - > I O ( )
hPut St r i ng h [ ]  = r et ur n ( )
hPut St r i ng h ( x: xs)  = do hPut Char  h x

hPut St r i ng h xs

mai n : :  I O ( )
mai n = do cont ent s <-  hGet Cont ent s s t di n

hPut St r i ng st dout  cont ent s
hPut St r i ng st dout  cont ent s
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The magic

Key property of the IO data type:
there are no functions to perform an action, yielding 
something without I O in its result type

• the only way to perform an action is
to have mai n return (an action containing) it

Corollary: can’t embed I/O (or any other kind of side-effect) in an 
expression that doesn’t yield an I/O action!

Type structure enforces a strict separation between
purely effect-free computations (result type != I O a)
and (potentially) effect-full computations (result type == I O a)

• effect-full computations are at the “top level” of the 
computation

• effect-free computations are its subexpressions

• effect-full computations are explicitly sequenced using do
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Effects and lazy evaluation

Lazy evaluation doesn’t interact badly with effects, since none of 
the effects are actually performed until mai n returns

• but nothing is computed until it’s demanded...

Operation of a Haskell program:

• Haskell runtime system demands result I/O action of mai n 
be computed and performed

• This demands evaluation & performance of
e.g. a do block action

• This demands evaluation & performance of
the first action in the do block

• Etc., until some primitive action is reached, at which point 
Haskell’s runtime system performs it, and then proceeds 
to the next action subexpression
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Polymorphic and overloaded functions

In ML, functions may either be

• completely polymorphic (e.g. l engt h: ' a l i st →i nt ) or 

• polymorphic over types that admit equality
(e.g. eq_pai r : ( ' ' a* ' ' b) * ( ' ' a* ' ' b) →bool ) or

• completely monomorphic (e.g. squar e: i nt →i nt )

Can’t define more restricted forms of polymorphism, 
e.g. a function that is polymorphic over numbers

E.g.

fun squar e n = n *  n;

requires n either to be i nt  or r eal , but not either

*  refers to two different overloaded functions,
not one polymorphic function

• can’t define functions polymorphic over the different 
overloadings

With the one oddball exception of equality types,
ML supports only unbounded parametric polymorphism
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Bounded polymorphism

Would like to allow bounded polymorphism,
constraining possible instantiating types
in order to be able to call specialized operations on them

E.g.:

• polymorphic over all types that support = (equality types)

• polymorphic over all types that support *  and +

• polymorphic over all types that support pr i nt

• polymorphic over all tuples with at least 3 components

• polymorphic over all records with hd and t l  fields

• ...

Constraints on type parameters let body know what operations 
can be performed on expressions of those types

• unbounded type variables: can only pass around

How to express constraints?
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Subtype constraints

In object-oriented languages, can often express constraints as
“polymorphic over all types that are subtypes of T”

• subtypes have all the operations of T, and maybe more

• body can perform all operations listed in T

E.g.

- class number  {
method +: ( number ) →number ;
method * : ( number ) →number ;
. . .

} ;

- class i nt  subtypes number  {  . . .  } ;

- class f l oat  subtypes number  {  . . .  } ;

- fun squar e n = n *  n;

val  squar e = f n :  number  → number ;

- squar e 3;

9 :  number

- squar e 3. 4;

11. 5 :  number

[How to get result type to be as precise as argument?]
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Type classes in Haskell

Haskell supports a similar idea, within a lazy, functional,
type-inference-based language framework

• similar to OO classes

• some key differences that limit its expressive power

Example: the class Eq of types a that implement ==

class Eq a where
( ==)  : :  a - > a - > Bool
( / =)  : :  a - > a - > Bool

• Eq is the name of the new type class

• == and / = are newly declared names of operations on this 
class

• global names � cannot overload with other global names

• a is a placeholder name for a type that’s in this class,
used in the type signatures of operations of the class
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Instances of type classes

Types must be explicitly declared to be members of particular 
type classes

• must provide implementations of type class’s operations

- -  I nt ,  Fl oat  are previously declared types

instance Eq I nt  where - -  I nt  ∈ Eq
x == y  = i nt Eq x y
x / = y  = i nt Neq x  y

instance Eq Fl oat  where - -  Fl oat  ∈ Eq
x == y  = f l oat Eq x y
x / = y  = f l oat Neq x y

Now can invoke type class operations on member types:

3  == 4 - -  al l owed;  cal l s  i nt Eq

3. 4 / = 5. 6 - -  al l owed;  cal l s  f l oat Neq

3 == 4. 5 - -  t ype er r or

" hi "  == " t her e"  - -  t ype er r or
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Type classes as constraints on polymorphism

Use a type class to constrain legal instantiations

E.g.:

eq_pai r  ( x1, y1)  ( x2, y2) =  x1==x2 && y1==y2

eq_pai r  : :  ( Eq a, Eq b) =>( a, b) - >( a, b) - >Bool

( Eq a, Eq b)  is a context, constraining the polymorphic type 
variables a and b to be instances of the Eq class

Contexts can be inferred by the type inference system,
based on operations used in the body

• requires that operations are defined in only one class;
cannot overload signatures in multiple classes

Contexts can also be given explicitly (as can regular types)

Another example:

member  : :  Eq a => a - > [ a]  - > Bool

member  _ [ ]  = Fal se
member  x ( y: ys)  =  x==y | |  member  x  ys
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Conditional instances

Can use context to place constraints on type variables for when 
something is a type class instance

“A pair supports == if its component types do”

instance ( Eq a, Eq b) => Eq ( a, b)  where

( x1, y1)  == ( x2, y2)  = x1==x2 && y1==y2

x / = y = not  ( x  == y)

“A list of a supports == if a does”

instance Eq a => Eq [ a]  where

[ ]  == [ ] = Tr ue
( x: xs)  == ( y : ys)  = x==y && xs==ys
_  == _ = Fal se

x / = y = not  ( x == y)
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Default implementations in type classes

Add a / = operation, which defaults to negating ==

class Eq a where
( ==) ,  ( / =)  : :  a - > a - > Bool
x / = y  = not  ( x == y)

Instances can “inherit” this default implementation, or provide 
their own

instance Eq I nt  where
x == y  = i nt Eq x  y
x / = y  = i nt Neq x  y - -  override default

instance ( Eq a,  Eq b) => Eq ( a, b)  where
( x1, y1)  == ( x2, y2)  = x1==x2 && y1==y2
- -  inherit default / =
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Type subclasses

Can define new type classes that
extend existing type classes & add new operations

• define the superclass(es) as contexts

• for a type to be an instance of a subclass,
it must already be an instance of all its superclasses

• multiple inheritance allowed

• name clashes can’t happen since operations not overloadable

Example: Or d class of totally ordered things, subclassing Eq

class Eq a => Or d a where

- -  Or d “inherits” Eq operations == and / =

( <) ,  ( <=) ,  ( >=) ,  ( >)  : :  a - > a - > Bool

mi n,  max : :  a - > a - > a

x <= y  = x  == y or  x < y
mi n x y = if x  < y then x  else y
. . .  (>=, >, and max  defaulted too) . . .

A client function:

member _sor t ed : :  Or d a => a - > [ a]  - > Bool

member _sor t ed _ [ ]  = Fal se
member _sor t ed x ( y: ys)  =

x==y | |  x<y && member _sor t ed x ys
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Ord instances

(assume Eq instances already declared)

instance Or d I nt  where
x < y = i nt Lt  x  y
x <= y  = i nt Leq x  y
. . .  - -  other operations implemented or inherited

instance ( Or d a,  Or d b) => Or d ( a, b)  where
( x1, y1)  < ( x2, y2) = x1<x2 | |  x1==x2 && y1<y2
- -  all other operations inherited

instance Or d a => Or d [ a]  where
[ ] < ( y: ys) = Tr ue
( x: xs)  < ( y: ys)  = x<y | |  x==y && xs<ys
_ < _ = Fal se

- -  all other operations inherited
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Hierarchy of some predefined type classes

Eq

Ord

Enum Num

Show

Real

Ix

Integral

Fractional

RealFrac Floating

RealFloat

Char

I nt I nt eger

Fl oat Doubl e

Bool

[ a]

( . . . )

all but - >, I O

Read
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Type classes vs. ML polymorphism

ML polymorphism is simple, but has warts:

• “equality-bounded” polymorphism

• overloaded operators, not polymorphism

Haskell’s type classes subsume and unify
unbounded polymorphism, equality-bounded polymorphism, 
and general bounded polymorphism

• default implementations are a nice feature, too

But type classes take over the language

• big part of standard library

• big part of reference manual

• temptation to go overboard with refining class hierarchy

• [just like OO languages]
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Type classes vs. OO classes

Type classes do not support run-time heterogeneous collections

• can have functions that are polymorphic over
lists of ints and lists of reals

• cannot have functions that accept
lists of mixed ints and reals

• no run-time subtyping, just compile-time subtyping 
(roughly)

• [Haskell extensions with existential types can do this]

No inheritance, other than single default method

Type classes support binary operations like == and + well,
where the arguments and result are all of same type

( ==)  : :  Eq a => a - > a - > Bool

( +) : :  Num a => a - > a - > a

• hard to do in an OO language without 
F-bounded subtype polymorphism or similar feature

Retain type inference, unlike OO languages


