
Craig Chambers 132 CSE 505

Haskell

Many similarities with ML

• functions are first-class values

• strongly, statically typed

• polymorphic type system

• automatic type inference

• expression-oriented, recursion-oriented

• garbage-collected heap

• pattern matching

• highly regular and expressive

Key differences:

• lazy evaluation instead of eager evaluation

• purely side-effect-free

• modads for controlled side-effects, I/O, etc.

• type classes for more flexible polymorphic typechecking

• simpler module system

• some interesting syntactic clean-ups and conveniences

Main design completed in 1992, by a committee,
to unify many earlier lazy functional languages

• most recent version: Haskell 98

Craig Chambers 133 CSE 505

Some syntactic differences with ML

ML:

- fun map f  ni l  = ni l
|  map f  ( x: : xs)  = f  x : :  map f  xs;

val  map = f n :  ( ' a- >' b)  - > ' a l i s t  - > ' b l i st

- val l st  = map squar e [ 3, 4, 5] ;

[ 9, 16, 25]  :  i nt  l i s t

- ( 3,  4,  fn x  y => x+y)

( 3, 4, f n)  :  i nt  *  i nt  *  ( i nt - >i nt - >i nt )

Haskell (decls vs. exprs & output depends on implementation):

map f  [ ]  = [ ]
map f  ( x: xs)  = f  x :  map f  xs

<f n> : :  ( a- >b)  - > [ a]  - > [ b]

l s t  = map squar e [ 3, 4, 5]

[ 9, 16, 25]  : :  [ I nt eger ]

( 3,  4,  \ x y - > x+y)

( 3, 4, <f n>)  : :  ( I nt eger ,  I nt eger ,
I nt eger - >I nt eger - >I nt eger )

Craig Chambers 134 CSE 505

More examples

ML:

- datatype ' a Tr ee =
Empt y |  Node of  ' a *  ' a Tr ee *  ' a Tr ee;

- fun s i ze Empt y = 0
|  s i ze ( Node( _, t 1, t 2) )  = 1+s i ze t 1+s i ze t 2;

- Node( 3, Empt y, Empt y) ;

Node( 3, Empt y, Empt y)  :  i nt  Tr ee

Haskell:

data Tr ee a = Empt y |  Node a ( Tr ee a)  ( Tr ee a)

s i ze Empt y = 0

s i ze ( Node _ t 1 t 2)  = 1 + s i ze t 1 + si ze t 2

Node 3

<f n> : :
Tr ee I nt eger  - > Tr ee I nt eger  - > Tr ee I nt eger

s i ze ( Node 4 ( Node 3 Empt y Empt y)  Empt y)

2 : :  I nt eger

Craig Chambers 135 CSE 505

General syntactic principles

Expressions and types use similar syntax

• ( 3, " hi " )  : :  ( I nt , St r i ng)

• [ 3, 4, 5]  : :  [ I nt ]

Upper-case letters for constructor constants and known types

Lower-case letters for variables and type variables

Functions and variables defined in same way,
with no leading keyword

• variables have no arguments

• functions have 1 or more arguments

Uniform use of curried functions,
including infix operators and data constructors

Type constructors use prefix notation, just like other functions

Layout & indentation are significant,
and imply grouping and nesting

• can use {  . . .  }  to explicitly control grouping



Craig Chambers 136 CSE 505

Sections

Can call an infix operator on 0 or 1 of its arguments to create a 
curried function that takes the remaining argument(s)

3 + 4

7 : :  I nt eger

( +)

<f n> : :  I nt eger  - > I nt eger  - > I nt eger

( + 1) - -  the increment function

<f n> : :  I nt eger  - > I nt eger

( 1 / ) - -  the inverse function

<f n> : :  Doubl e - > Doubl e

Parentheses convert an infix operator into a prefix fn expression

Can treat a prefix fn name as an infix operator 
by bracketing with backquotes

6 ‘ di v ‘  2

3 : :  I nt eger

Craig Chambers 137 CSE 505

List comprehensions

Nice syntax for constructing a list from generators and guards:

[  expr |  var <-  expr,  ...,  boolExpr,  ... ]

[  f  x |  x <-  xs ] - -  map f  xs  

[  ( x , y)  |  x <-  xs,  y <-  ys ]  - -  z i p xs  ys

[  y  |  y <-  ys,  y  > 10 ] - -  f i l t er  ( > 10)  ys

qui cksor t  [ ]  = [ ]

qui cksor t  ( x: xs)  = qui cksor t  [ y |  y<- xs,  y<x]
++ [ x ]
++ qui cksor t  [ y  |  y<- xs,  y>=x]

Arithmetic sequences easy to construct, too

[ 1. . 10] → [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

[ 2, 4. . 10] → [ 2, 4, 6, 8, 10]

[ 2, 4. . ] → [ 2, 4, 6, 8, 10, 12, . . .

[ 1. . ] → [ 1, 2, 3, 4, 5, 6, 7, . . .

Craig Chambers 138 CSE 505

Lazy vs. eager evaluation

When is a function argument evaluated?

• eager, applicative-order, strict:
before passing value to function

• lazy, normal-order, nonstrict, call-by-need, demand-driven:
when/if first needed

When is an expression’s value needed?

• when it’s being called as a function

• when it’s being used as the test of an i f

• when it’s an operand of + (or some other primitive that can’t 
compute its result without looking at the value of its 
argument)

• when it’s being pattern-matched against
(but then only enough to get the constructor tag;
the components don’t need to be evaluated until they’re 
needed)

• if it’s the final result of the program

When is an expression not needed?

• when it’s not used

• when it’s just bound to another variable, e.g. a formal

• when it’s an argument of a data constructor

Craig Chambers 139 CSE 505

Example

my_i f  t est  t hen_val  el se_val  =
if t es t  then t hen_val  else el se_val

my_i f  Tr ue 3 4 → 3

my_i f  Fal se 3 4 → 4

x  = 3

y = 12

my_i f  ( x / = 0)  ( y ‘ di v ‘  x)  ( - 1) → 4

- -  different than in ML or Scheme!

A call to my_i f  doesn’t evaluate its arguments first

The test is always evaluated, since it’s needed to progress

Either the t hen_val  or the el se_val  is evaluated,
but not both

Needed “special form” in Scheme & ML to achieve this

Unnecessary in a lazy language



Craig Chambers 140 CSE 505

Issues with lazy evaluation

Only computations needed for getting the result need to be 
evaluated

• can avoid useless work

• can write programs that look inefficient but need not be

• generator + transformer style

• “infinite” data structures,
of which only a finite amount is ever actually used

Can always replace variable with defined expression
� better equational reasoning

Evaluation order depends on what caller of function demands
� hard to determine

• disallow side-effects, I/O, exceptions, etc.
in (lazy) expressions

• use monads at outer level to get effects, in a specific order

Craig Chambers 141 CSE 505

Streams

Lists can be viewed as (possibly infinite) streams of values

• head, t ai l  fields of a list structure won’t be evaluated
until & unless they’re demanded

Lazy evaluation holds for all data structures in same way

- -  an infinite list of ascending integers, starting with n:
i nt s_f r om n = n :  i nt s_f r om ( n + 1)

- -  shorthand: [ n. . ]

- -  the natural numbers:
nat s  = i nt s_f r om 0 - -  shorthand: [ 0. . ]

- -  the perfect squares:
squar es = map ( ^  2)  nat s

→ [ 0,  1,  4,  9,  16,  25,  . . .

- -  the fibonacci numbers:
f i bs  = 0 :  1 :

[  a+b |  ( a, b)  <-  z i p f i bs ( t ai l  f i bs) ]

→ [ 0,  1,  1,  2,  3,  5,  8,  13,  21,  34,  55,  . . .

Craig Chambers 142 CSE 505

Simulating streams using first-class functions

Can simulate streams by wrapping lazy part(s) in function(s)

E.g. a lazy list: pair of functions to produce the head and the tail 
on demand

- datatype ' a l azy_l i st  =

= l azy_ni l  |

= l azy_cons of ( uni t  - > ' a)  *

= ( uni t  - > ' a l azy_l i s t ) ;

- fun l azy_hd( l azy_cons( f h, _) )  = f h( ) ;

val  l azy_hd = f n :  ' a l azy_l i s t  - > ' a

- fun l azy_t l ( l azy_cons( _, f t ) )  = f t ( ) ;

val  l azy_t l  = f n :  ' a l azy_l i st  - > ' a l azy_l i st

- fun f i r s t ( 0,  _)  = [ ]

= |  f i r s t ( n,  l azy_cons( f h, f t ) )  =

= f h( )  : :  f i r st ( n- 1,  f t ( ) ) ;

val  f i r st  = f n :  i nt  *  ' a l azy_l i st  - > ' a l i st

Craig Chambers 143 CSE 505

A client

- fun i nt s_f r om n =

= l azy_cons( f n( ) =>n,  f n( ) =>i nt s_f r om( n+1) ) ;

val  i nt s_f r om = f n :  i nt  - > i nt  l azy_l i st

- val nat s  = i nt s_f r om 0;

val  nat s = l azy_cons( f n, f n)  :  i nt  l azy_l i s t

- val s i ngl e_di gi t s  = f i r st ( 10,  nat s) ;

[ 0, 1, . . . , 9]  :  i nt  l i s t

Will re-evaluate body of function each time head/tail of a 
particular lazy list is referenced, unlike real lazy evaluation

• Scheme builds in del ay  and f or ce to avoid this

Have to have multiple versions of list operations like map, f ol d, 
etc., for eager vs. lazy lists, unlike real lazy evaluation



Craig Chambers 144 CSE 505

Generators and transformers

Programming style exploiting lazy evaluation,
leading to more reusable components

Construct a toolkit of operations to generate interesting streams

• lots of list processing functions, e.g.
mapping & filtering & combining & (un)zipping streams

• scanner produces a stream of tokens

• input produces a stream of characters

• event-driven simulations produce streams of events

• ....

Don’t worry about controlling how much to generate;
generate everything that might possibly be useful

Independently produce operations to manipulate and extract 
interesting subset of generated data

• only portion needed in final result will actually be generated

Craig Chambers 145 CSE 505

Example

Implement scanner as a generator of a stream of tokens

Implement utility that checks which functions have been 
changed since last compile

• generate streams of tokens on both versions

• compares two streams to find difference

• if difference found, rest of tokens won’t be demanded, 
therefore won’t be generated

Implement parser to produce a stream of possible parses,
if grammar has type-dependent ambiguities (like C++)

• consumes stream of tokens, until first syntax error

Implement typechecker to
consume possible parse trees,
filter for those that typecheck

Craig Chambers 146 CSE 505

I/O

How can a purely functional program interact with the outside 
world, e.g. read any (mutable) input or produce any output?

Idea:

• introduce a special I O type,
whose values are I/O actions that could be performed

• top-level mai n function yields an I/O action,
which is performed only “when main returns”

• but lazy evaluation makes this happen “as soon as possible”

I O data type is a special case of a monad

• very powerful mechanism for controlling & encapsulating 
effects of many sorts, including mutable state, 
exceptions, resource consumption, etc.

Craig Chambers 147 CSE 505

IO actions

I O a: the type of actions that have some I/O effect and then 
yield a value of type a

mai n : :  I O ( )

• mai n returns an I/O action that has no result

• the system runs a program by demanding the result of main, and 
executing the actions that are computed

Some basic I/O actions:

• get Char  : :  I O Char

• put Char  : :  Char  - > I O ( )

• openFi l e : :  St r i ng - > I OMode - > I O Handl e

• hCl ose : :  Handl e - > I O ( )

• s t di n,  st dout  : :  I O Handl e

• hGet Char  : :  Handl e - > I O Char

• hPut Char  : :  Handl e - > Char  - > I O ( )

• hGet Cont ent s : :  Handl e - > I O St r i ng

A no-op action:
r et ur n expr  : :  I O t ypeOf Expr

• does no I/O but yields a value



Craig Chambers 148 CSE 505

Composite actions

Can combine actions together, in sequences:

do v1 <- act i on1

v2 <- act i on2

. . .
act i onn

• yields an action that, if performed,
first performs act i on1, binding the result value to v1,
then peforms act i on2, binding the result value to v2,
...,
then performs act i onn and returns its result value

• any of the v i  are optional

Example: a program that copies its input to its output, twice

hPut St r i ng : :  Handl e - > St r i ng - > I O ( )
hPut St r i ng h [ ]  = r et ur n ( )
hPut St r i ng h ( x: xs)  = do hPut Char  h x

hPut St r i ng h xs

mai n : :  I O ( )
mai n = do cont ent s <-  hGet Cont ent s s t di n

hPut St r i ng st dout  cont ent s
hPut St r i ng st dout  cont ent s

Craig Chambers 149 CSE 505

The magic

Key property of the IO data type:
there are no functions to perform an action, yielding 
something without I O in its result type

• the only way to perform an action is
to have mai n return (an action containing) it

Corollary: can’t embed I/O (or any other kind of side-effect) in an 
expression that doesn’t yield an I/O action!

Type structure enforces a strict separation between
purely effect-free computations (result type != I O a)
and (potentially) effect-full computations (result type == I O a)

• effect-full computations are at the “top level” of the 
computation

• effect-free computations are its subexpressions

• effect-full computations are explicitly sequenced using do

Craig Chambers 150 CSE 505

Effects and lazy evaluation

Lazy evaluation doesn’t interact badly with effects, since none of 
the effects are actually performed until mai n returns

• but nothing is computed until it’s demanded...

Operation of a Haskell program:

• Haskell runtime system demands result I/O action of mai n 
be computed and performed

• This demands evaluation & performance of
e.g. a do block action

• This demands evaluation & performance of
the first action in the do block

• Etc., until some primitive action is reached, at which point 
Haskell’s runtime system performs it, and then proceeds 
to the next action subexpression

Craig Chambers 151 CSE 505

Polymorphic and overloaded functions

In ML, functions may either be

• completely polymorphic (e.g. l engt h: ' a l i st →i nt ) or 

• polymorphic over types that admit equality
(e.g. eq_pai r : ( ' ' a* ' ' b) * ( ' ' a* ' ' b) →bool ) or

• completely monomorphic (e.g. squar e: i nt →i nt )

Can’t define more restricted forms of polymorphism, 
e.g. a function that is polymorphic over numbers

E.g.

fun squar e n = n *  n;

requires n either to be i nt  or r eal , but not either

*  refers to two different overloaded functions,
not one polymorphic function

• can’t define functions polymorphic over the different 
overloadings

With the one oddball exception of equality types,
ML supports only unbounded parametric polymorphism



Craig Chambers 152 CSE 505

Bounded polymorphism

Would like to allow bounded polymorphism,
constraining possible instantiating types
in order to be able to call specialized operations on them

E.g.:

• polymorphic over all types that support = (equality types)

• polymorphic over all types that support *  and +

• polymorphic over all types that support pr i nt

• polymorphic over all tuples with at least 3 components

• polymorphic over all records with hd and t l  fields

• ...

Constraints on type parameters let body know what operations 
can be performed on expressions of those types

• unbounded type variables: can only pass around

How to express constraints?

Craig Chambers 153 CSE 505

Subtype constraints

In object-oriented languages, can often express constraints as
“polymorphic over all types that are subtypes of T”

• subtypes have all the operations of T, and maybe more

• body can perform all operations listed in T

E.g.

- class number  {
method +: ( number ) →number ;
method * : ( number ) →number ;
. . .

} ;

- class i nt  subtypes number  {  . . .  } ;

- class f l oat  subtypes number  {  . . .  } ;

- fun squar e n = n *  n;

val  squar e = f n :  number  → number ;

- squar e 3;

9 :  number

- squar e 3. 4;

11. 5 :  number

[How to get result type to be as precise as argument?]

Craig Chambers 154 CSE 505

Type classes in Haskell

Haskell supports a similar idea, within a lazy, functional,
type-inference-based language framework

• similar to OO classes

• some key differences that limit its expressive power

Example: the class Eq of types a that implement ==

class Eq a where
( ==)  : :  a - > a - > Bool
( / =)  : :  a - > a - > Bool

• Eq is the name of the new type class

• == and / = are newly declared names of operations on this 
class

• global names � cannot overload with other global names

• a is a placeholder name for a type that’s in this class,
used in the type signatures of operations of the class

Craig Chambers 155 CSE 505

Instances of type classes

Types must be explicitly declared to be members of particular 
type classes

• must provide implementations of type class’s operations

- -  I nt ,  Fl oat  are previously declared types

instance Eq I nt  where - -  I nt  ∈ Eq
x == y  = i nt Eq x y
x / = y  = i nt Neq x  y

instance Eq Fl oat  where - -  Fl oat  ∈ Eq
x == y  = f l oat Eq x y
x / = y  = f l oat Neq x y

Now can invoke type class operations on member types:

3  == 4 - -  al l owed;  cal l s  i nt Eq

3. 4 / = 5. 6 - -  al l owed;  cal l s  f l oat Neq

3 == 4. 5 - -  t ype er r or

" hi "  == " t her e"  - -  t ype er r or



Craig Chambers 156 CSE 505

Type classes as constraints on polymorphism

Use a type class to constrain legal instantiations

E.g.:

eq_pai r  ( x1, y1)  ( x2, y2) =  x1==x2 && y1==y2

eq_pai r  : :  ( Eq a, Eq b) =>( a, b) - >( a, b) - >Bool

( Eq a, Eq b)  is a context, constraining the polymorphic type 
variables a and b to be instances of the Eq class

Contexts can be inferred by the type inference system,
based on operations used in the body

• requires that operations are defined in only one class;
cannot overload signatures in multiple classes

Contexts can also be given explicitly (as can regular types)

Another example:

member  : :  Eq a => a - > [ a]  - > Bool

member  _ [ ]  = Fal se
member  x ( y: ys)  =  x==y | |  member  x  ys

Craig Chambers 157 CSE 505

Conditional instances

Can use context to place constraints on type variables for when 
something is a type class instance

“A pair supports == if its component types do”

instance ( Eq a, Eq b) => Eq ( a, b)  where

( x1, y1)  == ( x2, y2)  = x1==x2 && y1==y2

x / = y = not  ( x  == y)

“A list of a supports == if a does”

instance Eq a => Eq [ a]  where

[ ]  == [ ] = Tr ue
( x: xs)  == ( y : ys)  = x==y && xs==ys
_  == _ = Fal se

x / = y = not  ( x == y)

Craig Chambers 158 CSE 505

Default implementations in type classes

Add a / = operation, which defaults to negating ==

class Eq a where
( ==) ,  ( / =)  : :  a - > a - > Bool
x / = y  = not  ( x == y)

Instances can “inherit” this default implementation, or provide 
their own

instance Eq I nt  where
x == y  = i nt Eq x  y
x / = y  = i nt Neq x  y - -  override default

instance ( Eq a,  Eq b) => Eq ( a, b)  where
( x1, y1)  == ( x2, y2)  = x1==x2 && y1==y2
- -  inherit default / =

Craig Chambers 159 CSE 505

Type subclasses

Can define new type classes that
extend existing type classes & add new operations

• define the superclass(es) as contexts

• for a type to be an instance of a subclass,
it must already be an instance of all its superclasses

• multiple inheritance allowed

• name clashes can’t happen since operations not overloadable

Example: Or d class of totally ordered things, subclassing Eq

class Eq a => Or d a where

- -  Or d “inherits” Eq operations == and / =

( <) ,  ( <=) ,  ( >=) ,  ( >)  : :  a - > a - > Bool

mi n,  max : :  a - > a - > a

x <= y  = x  == y or  x < y
mi n x y = if x  < y then x  else y
. . .  (>=, >, and max  defaulted too) . . .

A client function:

member _sor t ed : :  Or d a => a - > [ a]  - > Bool

member _sor t ed _ [ ]  = Fal se
member _sor t ed x ( y: ys)  =

x==y | |  x<y && member _sor t ed x ys



Craig Chambers 160 CSE 505

Ord instances

(assume Eq instances already declared)

instance Or d I nt  where
x < y = i nt Lt  x  y
x <= y  = i nt Leq x  y
. . .  - -  other operations implemented or inherited

instance ( Or d a,  Or d b) => Or d ( a, b)  where
( x1, y1)  < ( x2, y2) = x1<x2 | |  x1==x2 && y1<y2
- -  all other operations inherited

instance Or d a => Or d [ a]  where
[ ] < ( y: ys) = Tr ue
( x: xs)  < ( y: ys)  = x<y | |  x==y && xs<ys
_ < _ = Fal se

- -  all other operations inherited

Craig Chambers 161 CSE 505

Hierarchy of some predefined type classes

Eq

Ord

Enum Num

Show

Real

Ix

Integral

Fractional

RealFrac Floating

RealFloat

Char

I nt I nt eger

Fl oat Doubl e

Bool

[ a]

( . . . )

all but - >, I O

Read

Craig Chambers 162 CSE 505

Type classes vs. ML polymorphism

ML polymorphism is simple, but has warts:

• “equality-bounded” polymorphism

• overloaded operators, not polymorphism

Haskell’s type classes subsume and unify
unbounded polymorphism, equality-bounded polymorphism, 
and general bounded polymorphism

• default implementations are a nice feature, too

But type classes take over the language

• big part of standard library

• big part of reference manual

• temptation to go overboard with refining class hierarchy

• [just like OO languages]

Craig Chambers 163 CSE 505

Type classes vs. OO classes

Type classes do not support run-time heterogeneous collections

• can have functions that are polymorphic over
lists of ints and lists of reals

• cannot have functions that accept
lists of mixed ints and reals

• no run-time subtyping, just compile-time subtyping 
(roughly)

• [Haskell extensions with existential types can do this]

No inheritance, other than single default method

Type classes support binary operations like == and + well,
where the arguments and result are all of same type

( ==)  : :  Eq a => a - > a - > Bool

( +) : :  Num a => a - > a - > a

• hard to do in an OO language without 
F-bounded subtype polymorphism or similar feature

Retain type inference, unlike OO languages


