
Craig Chambers 119 CSE 505

Quasiquote

The argument of quot e is a literal constant

' (i f (> a b) 3 4)) → (i f (> a b) 3 4))

More flexible: allow “holes” in the literal,
to be filled in with run-time computed values

quasi quot e, or ‘ (backquote) allows this

• , expr marks a hole, filled in with result of evaluating expr

• , @listexpr marks a hole, filled in with elements of list
resulting from evaluating listexpr

(def i ne (make- i f t est t hen el se)
‘ (i f , t es t , t hen , el se))

(make- i f ' (> a b) 3 4)) → (i f (> a b) 3 4)

(def i ne (make- cal l f n ar gs)
‘ (, f n , @ar gs))

(make- cal l ' + ' (3 4 5)) → (+ 3 4 5)

Very useful in many systems that build structured data,
particularly program representations

Craig Chambers 120 CSE 505

Side-effect special forms

set ! : rebind a variable to refer to a different value

(def i ne x 5)
(set ! x ' (6 7))
x → (6 7)

(def i ne (t est l s t)
(set ! l st (cons 1 l st))
l st)

(t es t ' (2 3)) → (1 2 3)

Scheme’s design is more biased towards side-effecting style
than ML’s

• all Scheme variables can be reassigned using set !

• mutation isn’t compartmentalized

• body of a function, arm of a cond, etc. is
a series of expressions to evaluate

• all but last evaluated just for their side-effects

• Scheme has predefined non-recursive looping constructs

Craig Chambers 121 CSE 505

Side-effects on cons cells

set - car ! , set - cdr ! : rebind head, tail of cons cell

(def i ne c (l i st 5 6))
(set - car ! c (l i s t 3 4))

c → ((3 4) 6)

(set - cdr ! (cdr c) (l i st 7 8))

c → ((3 4) 6 7 8)

6

()c

3 4

()

6

()c

3 4

() 7 8

Craig Chambers 122 CSE 505

Example

append! : destructive append

(def i ne (append! l s t 1 l s t 2)
(cond ((nul l ? l st 1) l st 2)

((nul l ? (cdr l s t 1))
(set - cdr ! l s t 1 l st 2)
l st 1)

(el se (append! (cdr l st 1) l st 2)
l st 1)))

(def i ne l s t 1 ' (3 4))
(def i ne l s t 2 ' (5 6 7))
(def i ne l s t 3 (append! l s t 1 l st 2))

l st 3 → (3 4 5 6 7)

append! more efficient than append, but
more complicated to use correctly in face of rampant sharing

l s t 1

4 5 6 7

()l st 3

3

l st 2

Craig Chambers 123 CSE 505

First-class functions

Scheme supports first-class, lexically-nested, statically-scoped
function values, just like ML

Translation between ML and Scheme

Scheme R5RS doesn’t have filter, fold, etc. predefined

ML Scheme

f n pat => expr (l ambda (id1 . . . idk)
expr1 . . . exprn)

map f lst (map f lst1 . . . lstn)

Craig Chambers 124 CSE 505

Control constructs

Languages support mechanisms for controlling execution flow:

Basic methods:

• procedure call & return, potentially recursively

• conditional execution like i f , cond

Advanced methods:

• looping (!)

• break, continue

• exception handling

• coroutines, threads

• ...

Craig Chambers 125 CSE 505

Continuations

Scheme supports all advanced control constructs
with one notion: continuations

A continuation is a function that can be called (with a result
value) to do “the rest of the program,” exiting the current task

• enables parameterizing a function by
“what to do next,” “where to return to”

• enables having multiple return places, not just the one
normal return, for different kinds of outcomes

Example, using normal functions as continuations:
f i nd parameterized by success and failure continuations

(def i ne (f i nd pr ed l s t i f - f ound i f - not - f ound)
(cond ((nul l ? l st) (i f - not - f ound))

((pr ed (car l st)) (i f - f ound (car l st)))
(el se (f i nd pr ed (cdr l st)

i f - f ound i f - not - f ound)))))

(f i nd i s- s t r i ng? ' (. . .)
(l ambda(x) ‘ (Yes , x))
(l ambda() ' No))

Craig Chambers 126 CSE 505

Current continuation

The normal return point is an implicit continuation:
it takes the returned value and does the rest of the program

Scheme makes this continuation first-class upon request using
cal l - wi t h- cur r ent - cont i nuat i on (a.k.a. cal l / cc)

cal l / cc takes an argument function of one argument, P,
and invokes P passing the current continuation, K, as P’s
argument

• if P returns V normally, cal l / cc returns V

• if P invokes K, passing one argument value, V,
P quits and cal l / cc returns V

Example: computing products with an early exit

(def i ne (pr od l s t)
(cal l / cc (l ambda (exi t) ; ; exit: reified context

(f ol dl
(l ambda (x accum)

(i f (zer o? x)
(ex i t 0) ; ; break out of loop, return 0
(* x accum) ; ; continue multiplying

))
1 l st))))

Craig Chambers 127 CSE 505

Another example: threads

Task: implement a lightweight non-preemptive thread package

API:

• (f or k f) : creates a new (initially suspended) thread,
which evaluates (f) when first resumed
and dies when evaluation is done

• (suspend) : suspends the current thread, then runs each
other suspended thread till it suspends again, then
resumes the current thread by returning

An example, with 3 threads:

(def i ne (t est - t hr eads)

(f or k (l ambda()
(di spl ay " hi \ n") (suspend)
(di spl ay " t her e\ n") (suspend)))

 (f or k (l ambda()
(di spl ay " j oe\ n") (suspend)
(di spl ay " l oui s\ n") (suspend)))

(di spl ay " A\ n") (suspend)
(di spl ay " B\ n") (suspend)
(di spl ay " C\ n") (suspend)
(di spl ay " D\ n") (suspend))

Craig Chambers 128 CSE 505

Threads via continuations (part 1 of 2)

Maintain a list of suspended “thread” objects,
represented by functions to call to resume the thread

(def i ne t hr ead- queue ())

(def i ne (enq- t hr ead! f)
(set ! t hr ead- queue

(append t hr ead- queue (l i st f))))

(def i ne (deq- t hr ead!)
(l et ((f (car t hr ead- queue)))

(set ! t hr ead- queue (cdr t hr ead- queue))
f))

Craig Chambers 129 CSE 505

Threads via continuations (part 2 of 2)

Fork adds a new thread to the queue, which dies when done

(def i ne (f or k f)
(enq- t hr ead!

(l ambda()
(f)
(r un- next - t hr ead))))

Suspend uses cal l / cc to create a handle for the current
thread, saves it, then switches to the next thread in the queue

• eventually this thread will be resumed by some other
thread’s suspend call

(def i ne (suspend)
(cal l / cc (l ambda (t hi s- t hr ead)

(enq- t hr ead! (l ambda() (t hi s- t hr ead ())))
(r un- next - t hr ead))))

Run-next-thread runs the next thread on the queue

(def i ne (r un- next - t hr ead)
(l et ((next - t hr ead (deq- t hr ead!)))

(next - t hr ead)))

Craig Chambers 130 CSE 505

Summary of continuations

Normal functions can be used as continuations

cal l / cc reifies the implicit internal continuation as a function
that can be manipulated like any other function

First-class continuations can do things that
otherwise require special language constructs

• exception throwing

• stack-unwind protection (like Java’s try-finally)

• coroutines and (non-preemptive) threads

• backtracking à la Prolog

Very powerful, which can be very confusing,
and hard to implement efficiently

Example: what should happen if a cal l / cc continuation
function is invoked more than once?

• e.g. suspend didn’t dequeue the thread, but left it on the
queue to be resumed again

