CSE 505: Programming Languages

"But if thought corrupts language, language can also corrupt thought. A bad usage can spread by tradition and imitation even among people who should and do know better."
George Orwell, Politics and the English Language, 1946
"If you cannot be the master of your language, you must be its slave."
Richard Mitchell
"A different language is a different vision of life."
Federico Fellini
"The language we use ... determines the way in which we view and think about the world around us."
The Sapir-Whorf hypothesis

Coursework

Functional \& OO sections:

- 1-2 homeworks each
- 1-2 programming projects each
- 1 exam each

Semantics section:

- 1-2 homeworks
- 1 exam

Final exam

Language design goals

Some end goals:

- be easy to learn
- support rapid initial development
- support easy maintenance, evolution
- encourage/guarantee reliability, safety
- encourage/guarantee portability
- allow/encourage efficiency

Some means to these goals:

- readability
- writability
- simplicity [but what does "simple" mean?]
- expressiveness [but what does this mean?]
- fully-specified, platform-independent, safe semantics

Many goals in conflict
\Rightarrow language design is an engineering \& artistic activity
\Rightarrow need to consider target audience's needs

Some good language design principles

Strive for a simple, regular, orthogonal model

- for evaluation
- for data reference
- for memory management
E.g., be expression-oriented, reference-oriented

Include sophisticated abstraction mechanisms, to define and name abstractions once, use many times

- for control structures, data structures, types, ...

Include polymorphic static type checking
E.g., with universal and existential subtype-bounded quantification

Have a complete \& precise language specification

- full run-time error checking for cases not detected statically

Domain-specific languages can exploit domain restrictions for better checking, expressiveness, performance

Some target audiences

Scientific, numerical computing

- Fortran, APL, ZPL

Systems programming

- C, C++, Modula-3, ...

Applications/symbolic programming

- Java, C\#, Lisp, Scheme, ML, Smalltalk, Cecil, Diesel, ...

Scripting, macro languages

- csh, Perl, Python, Tcl, Excel macros, ...

Specialized languages

- SQL, L ${ }^{A} T_{E} X$, PostScript, Unix regular expressions, ...

Partial history of programming languages

Craig Chambers
CSE 505

ML

Salient features:

- functional
- functions are first-class values
- largely side-effect free
- strongly, statically typed
- polymorphic type system
- automatic type inference
- expression-oriented, recursion-oriented
- garbage-collected heap
- pattern matching
- exceptions
- advanced module system
- highly regular and expressive

Designed as a Meta Language for automatic theorem proving system in mid 70's by Milner et al.
Standard ML: 1986
SML'97: 1997
Caml: a French version of ML, mid 80's
O'Caml: an object-oriented extension of Caml, late 90's
EML: a locally-developed OO extension of ML, 2002

Basic ML data types and operations

ML is organized around types

- each type defines some set of values of that type
- each type defines a set of operations on values of that type int
- ~, +, -, *, div, mod; =, <>, <, >, <=, >=; real, chr
real
- ~, +, -, *, /; <, >, <=, >= (no equality);
floor, ceil, trunc, round
bool: different from int
- true, false; =, <>; orelse, andalso

```
string
    \bullet e.g."I said \"hi\"\tin dir C:\\stuff\\dir\n"
    • =, <>, ^
char
    • e.g.#"a",#"\n"
    • =, <>; ord, str
    Craig Chambers

\section*{Interpreter interface}

Read-eval-print loop
- read input expression
- reading ends with semi-colon (not needed in files)
- = prompt indicates continuing expression on next line
- evaluate expression
- print result
- repeat
- 3 + 4;
val it \(=7\) : int
- it + 5;
val it \(=12\) : int
- it + 5;
val it \(=17\) : int
it variable (re)bound to last evaluated value, in case you want to use it again

An interpreter is particularly useful during initial learning and debugging

\section*{Variables and binding}

Variables declared and initialized with a val binding:
- val x:int \(=6\);
val \(x=6\) : int
- val y:int \(=x\) * \(x\);
val \(y=36\) : int

Variable bindings cannot be changed!
- unlike assignment in C
- like equality in math

Variables can be bound again, but this shadows the previous definition
- e.g. it

Variable types can be omitted
- they will be inferred by ML based on the type of the r.h.s.
- val \(z=x\) * \(y+5 ;\) val \(z=221\) : int

\section*{Strong, static typing}

ML is statically typed: it will check for type errors statically
(i.e., when programs are entered, not when they're run)
- opposite extreme: dynamically typed
- blends also possible

ML is strongly typed: it catches all type errors (a.k.a. type safe)
[but which errors are classified as type errors?]
- if not strongly typed, then weakly typed

Examples of other combinations?
\begin{tabular}{|r||rr|}
\hline & static & \(\longleftrightarrow \rightarrow\) \\
\hline strong & & \\
\hline weak & & \\
\hline & & \\
\hline
\end{tabular}

\section*{Records}

ML records are like C structs
- allow heterogeneous field types, but fixed number of fields

A record type: \{name:string, age:int\}
- field order doesn't matter

Unlike C, can write down a record value directly:
\{name="Bob Smith", age=20\}

Unlike C, can construct record values that have run-time expressions specifying the field values
```

{name = "Bob " ^ "Smith",
age = 18+num_years_in_college}

```

As with any other value, can bind record values to variables
```

_val bob = {name="Bob " ^ "Smith", age=...};
val bob = {age=20, name="Bob Smith"}
: {age:int, name:string}

```

Orthogonality in action...

\section*{Type errors}

Warning: type errors can look weird, since they use ML jargon:
- asd;

Error: unbound variable or constructor: asd
\(-3+4.5\);
Error: operator and operand don't agree
operator domain: int * int
operand: int * real
in expression:
\(3+4.5\)
\(-3 / 4 ;\)
Error: overloaded variable not defined at type symbol: /
type: int

\section*{More on records}

Can extract record fields using \# fieldname function (like C's -> operator, but a regular function)
- val bob' = \{name= \#name (bob),
\(=\quad\) age \(=\#\) age (bob) +1\(\}\);
val \(\mathrm{bob}^{\prime}=\{\) age \(=21\), name="Bob Smith" \(\}\) : \{...\}
(But wait for pattern-matching, a better way to access components of records)

Cannot assign to a record's fields
- an immutable data structure

\section*{Tuples}

Like records, but fields ordered by position, not label Useful for pairs, triples, etc.

A tuple type: string * int
- order does matter

A tuple value: ("Joe Stevens", 45)

A tuple expr: ("Joe " ^ "Stevens", 25+num_jobs*10)

Binding a name to a tuple:
```

_ val joe = ("Joe "^"Stevens", 25+num_jobs*10)
val joe = ("Joe Stevens",45) : string * int

```

Can extract tuple fields using \#n functions (but wait for pattern-matching for a better way)
- val joe' = (\#1(joe), \#2(joe)+1); val joe' = ("Joe Stevens",46) : string * int

Cannot assign to a tuple's components
- another immutable data structure

Craig Chambers
17

\section*{Basic operations on lists}

Add to front of list, non-destructively: : : (an infix operator)
- val lst1 = 3::(4::(5::nil));
val lst \(1=[3,4,5]\) : int list
- val lst2 = 2::lst1; val lst \(2=[2,3,4,5]\) : int list

Adding to the front allocates a new link; the original list is unchanged and still available

- lst1
val it \(=[3,4,5]\) : int list

\section*{Lists}

ML has built-in support for singly-linked lists
- unlike records, require homogeneous element types, but allow variable number of elements

A list type: int list
- in general: \(T\) list, for any type \(T\)

A list value: [3, 4, 5]
- [ ] (or nil) is the empty list

An expression constructing a list:
[1+2, 8 div 2, \#age (bob)-15]

Binding a name to a list:
- val lst \(=[1+2,8\) div 2, \#age (bob) -15\(]\);
val lst \(=[3,4,5]\) : int list

\section*{More on lists}

Lists can be nested:
```

- (3 :: nil) :: (4 :: 5 :: nil) :: nil;

```
val it \(=[[3],[4,5]]:\) int list list

Lists are homogeneous:
```

- [3, "hi there"];
Error: operator and operand don't agree
operator domain: int * int list
operand: int * string list
in expression:
(3 : int) :: "hi there" :: nil

```

\section*{Manipulating lists}

Test whether a list is empty: null
\[
\begin{aligned}
& \text { - null([]); } \\
& \text { val it = true : bool }
\end{aligned}
\]

Extract the first ("head") element of the list: hd
\[
\begin{aligned}
& \text { - hd(l1) + hd(l2); } \\
& \text { val it }=5 \text { : int }
\end{aligned}
\]

Extract the rest ("tail") of the list: \(t 1\)
\[
\begin{aligned}
& \text { - val lst3 }=\text { tl(lst1); } \\
& \text { val lst } 3=[4,5] \text { : int list } \\
& \text { - val lst4 }=\text { tl(tl(lst3)); } \\
& \text { val lst } 4=[] \text { : int list } \\
& \text { - tl(lst4); (* or hd(lst4) *) } \\
& \text { uncaught exception Empty }
\end{aligned}
\]
(Pattern-matching offers alternative ways)

Cannot assign to a list's elements
- another immutable data structure

\section*{Reference data model}

A variable refers to a value (of whatever type), uniformly
A record, tuple, or list refers to its element values, uniformly
- all values are implicitly referred to by pointer (even scalars like ints, bools, \& chars can be viewed this way, although they're likely implemented more efficiently)

A variable expression evaluates to a reference to the value that the variable was bound to

A variable binding makes the l.h.s. variable
refer to its r.h.s. value

No implicit copying upon binding, parameter passing, returning from a function, storing in a data structure
- like Java, Scheme, Smalltalk, ...; all high-level languages
- unlike C, where non-pointer values are copied
- C arrays?

No restrictions on where values may be passed, stored \(\Rightarrow\) values have potentially unlimited lifetime
- implementation allocates all (non-scalar) values in the heap

\section*{First-class values}

\section*{All of ML's data values are first-class}
- there are no restrictions on how they can be created, used, passed around, bound to names, stored in other data structures, ...

One consequence: can nest records, tuples, lists arbitrarily
A legal value, and its type:
```

{foo=(3, 5.6, "seattle"),
bar=[[3,4], [5,6,7,8], [], [1,2]]}
: {bar:int list list, foo:int*real*string}

```

\section*{Another consequence:}
can create initialized, anonymous values as expressions, instead of using a sequence of statements to first declare (allocate named space) and then assign to initialize
- name-binding is orthogonal to value creation

\section*{A further consequence:}
all data values are fully initialized upon creation
- no safety issues about accessing uninitialized data

\section*{Garbage collection}

ML provides several ways to allocate \& initialize new values:
\[
(\ldots),\{\ldots\},[\ldots],::
\]

But ML provides no way to deallocate/free values that are no longer being used

Instead, ML provides automatic garbage collection: when there are no more references to a value (either from variables or from other objects), it is deemed garbage, and the system will automatically deallocate the value

Evaluation of automatic garbage collection
+ dangling pointers impossible
(could not guarantee type safety without this!)
+ storage leaks "impossible"
+ simpler programming
+ can be more efficient!
- less ability to carefully manage memory use \& reuse
(Automatic GCs exist even for C \& C++, as free libraries)

\section*{Functions}

Some function definitions:
```

- fun square(x:int):int = x * x;
val square = fn : int -> int
- fun swap(a:int, b:string):string*int = (b,a);
val swap = fn : int*string -> string*int

```

A function has a type of the form \(T_{\text {arg }} \rightarrow T_{\text {result }}\)
- if want multiple arguments, use tuple type for \(T_{\text {arg }}\)
- * binds tighter than ->
- can use tuple type for \(T_{\text {result }}\), too!

Some function calls:
- square (3);
val it \(=9\) : int
- swap(3 * 4, "billy" ^ "bob");
val it \(=(" b i l l y b o b ", 12)\) : string * int

\section*{Expression-orientation}

\section*{Function body is a single expression}
fun square (x:int):int \(=x\) * \(x\)
- not a statement list
- no return keyword

\section*{Like equality in math}
- a call to a function is equivalent to its body, after substituting its formals for the actuals in the call (square 3\() \Leftrightarrow\left(x^{*} x\right)[x \rightarrow 3] \Leftrightarrow 3 * 3\)

There are no statements in ML, only expressions
- what would be statements in other languages are recast as expressions in ML

\section*{Function call syntax}

Since all functions take one argument, parentheses aren't part of the call syntax:
- square 3;
val it = 9 : int
- (square 3) + (square 4);
val it = 25 : int

Juxtaposition binds tighter than infix operators:
```

- square 3 + square 4;
val it = 25 : int
- square (3 + square 4);
val it = 361 : int

```

Parentheses common if argument is a tuple expression:
- swap (3 * 4, "billy" ^ "bob");
val it \(=(\) "billybob",12) : string * int

\section*{If expression}

General form:
if test then el else e2
- return value of either e1 or e2, based on whether test is true or false
- cannot omit el se part
- fun max(x:int, \(y: i n t): i n t=\)
\(=\quad\) if \(\mathrm{x}>=\mathrm{y}\) then x else y ;
val max \(=\) fn : int * int \(->\) int

Like test ? e1 : e2 expression in C
- don't need a distinct if statement

\section*{Static typechecking of if expression}

What are the rules for typechecking an if expression?
What's the type of the result of if?

Some basic principles of typechecking:
- values are members of types
- the type of an expression must include all the values that might possibly result from evaluating that expression at run-time

\section*{Requirements on each if expression:}
- the type of the test expression must be bool
- the type of the result of the if must include whatever values might be returned from the if
- the if might return the result of either e1 or e2
- ML's solution: e1 and e2 must have the same type, and that type is the type of the result of the if expression (other languages have more general solutions)

Evaluates \(e_{\text {body }}\) and returns its result as result of let expr
- \(e_{\text {body }}\) can refer to all the \(i d_{1}\). .id \(d_{n}\) bindings

The \(i d_{i}\) bindings (not values) disappear after \(e_{b o d y}\) is evaluated

\section*{Example scopes}
```

- val x = 3;

```
- val x = 3;
val x = 3 : int
val x = 3 : int
- fun f(y:int):int =
- fun f(y:int):int =
= let
= let
= val z = x + y
= val z = x + y
= val x = 4
= val x = 4
= in
= in
= (let
= (let
= val y = z + x
= val y = z + x
= in
= in
= x + y + z
= x + y + z
= end)
= end)
= + x + y + z
= + x + y + z
= end;
= end;
val f = fn : int -> int
val f = fn : int -> int
- val x = 5;
- val x = 5;
val x = 5 : int
val x = 5 : int
- f x;
- f x;
val it = 41 : int
```

val it = 41 : int

```

\section*{"Statements"}

For expressions that have no useful result, return empty tuple, of type unit:
- print "hi\n";
hi
val it \(=()\) : unit

Expression sequence operator: ; (infix operator)
- evaluates both "arguments", returns second one
- like C's comma operator
_ val \(z=(p r i n t ~ " h i ~ " ; ~ p r i n t ~ " t h e r e \backslash n " ; ~ 3) ; ~\)
hi there
val z = 3 : int

\section*{Type inference for functions}

Declaration of function result types can be omitted
- infer function result type from body expression result type
- fun max(x:int, y:int) =
\(=\quad\) if \(x\) >= \(y\) then \(x\) else \(y ;\)
val max \(=\) fn : int * int -> int

Can even omit declarations of formal argument types
- infer based on how arguments are used in body
- constraint-based algorithm to do type inference
- fun \(\max (x, y)=\)
\(=\quad\) if \(x>=y\) then \(x\) else \(y ;\) val max \(=\) fn : int * int -> int

\section*{Polymorphic types}

A polymorphic type contains one or more type variables
- an identifier prefixed with a quote
E.g.
\[
\begin{aligned}
& \text { 'a list } \\
& \text { 'a *'b*'a *'c } \\
& \{x: ' a, y: ' b\} \text { list * 'a }->\text { 'b }
\end{aligned}
\]

A polymorphic type describes a set of possible types, where each type variable is replaced with some actual type - each occurrence of a type variable must be replaced with the same type
```

'a * 'b * 'a * 'c
['a \rightarrow int, 'b \rightarrow string, 'c \rightarrow real->real]
\Rightarrow
int * string * int * (real->real)

```

\section*{Functions with many possible types}

Some functions could be used on arguments of different types

\section*{Some examples:}
null: can test an int list, or a string list, or ....
- in general, work on a list of any type \(T\) :
```

null: T list -> bool

```
hd: similarly works on a list of any type \(T\), and returns an element of that type:
```

hd: T list -> T

```
swap: takes a pair of an \(A\) and a \(B\), returns a pair of a \(B\) and an \(A\) : swap: \(A\) * \(B \rightarrow B\) * \(A\)

How to define such functions in a statically-typed language?
- in C: can't (or have to use casts)
- in C++: can use templates (but can't check separately)
- in Java, C\#: use generic Object type, plus downcasts
- in ML: allow functions to have polymorphic types

Craig Chambers
34

\section*{Polymorphic functions}

Functions can have polymorphic types:
```

null : 'a list -> bool
hd : 'a list -> 'a
tl : 'a list -> 'a list
(op ::): 'a * 'a list -> 'a list
swap : 'a * 'b -> 'b * 'a

```

To call a polymorphic function, must first instantiate the polymorphic type into some regular function type
- caller knows types of arguments
- can compute how to replace type variables so that the replaced function type matches the argument types
- derive type of result of call
- each call of a function instantiated independently
E.g. hd [3, 4, 5]
- actual argument type: int list
- polymorphic type of hd: 'a list -> 'a
- replace 'a with int (to make 'a list match int list)
- instantiated type of hd for this call: int list -> int
- type of result of call: int

Craig Chambers

\section*{Polymorphic values}

Non-functions can have polymorphic types, too:
nil: 'a list

Each reference to a polymorphic value finds the right instantiation for that use, separately from other references
E.g.
(3 :: 4 :: nil) :: (5 :: nil) :: nil

\section*{An awkward special case: equality types}

The built-in = function tests for "structural" or value equality (not identity)
The = function is polymorphic over all types that "admit equality"
- any type except those containing reals or functions
- use ' 'a, ' 'b, etc. to stand for these equality types
```

- fun is_same(x, y) =
if x = y then "yes" else "no";
val is_same = fn : ''a * ''a -> string
- is_same(3, 4);
val it = "no" : string
_ is_same({l=[3,4,5],h=("a","b"),w=nil},
{l=[3,4,5],h=("a","b"),w=nil});
val it = "yes" : string
- is_same(3.4, 3.4);
Error: operator and operand don't agree
[equality type required]
operator domain: ''Z * 'rZ
operand: real * real
in expression:
is_same (3.4,3.4)

```

\section*{Loops, using recursion}

ML has no loop statement or expression Instead, use recursion to compute a result
E.g., appending one list onto the front of another one (non-destructively, since lists are immutable)


Craig Chambers

\section*{Tail recursion}

Tail recursion: recursive call is last operation before returning - can be implemented just as efficiently as iteration, in both time and space, since tail-caller isn't needed after callee returns

Some tail-recursive functions:
```

fun last(lst) =
let val tail = tl lst in
if null tail then
hd lst
else
last tail
end
fun includes(lst, x) =
if null lst then
false
else if hd lst = x then
true
else
includes(tl lst, x)
Is append tail-recursive?

```

\section*{Converting to tail-recursive form}

Can often rewrite a non-tail-recursive function tail-recursively
- introduce a helper function
- the helper function has an extra accumulator argument
- the accumulator holds the partial result computed so far
- accumulator returned as full result when base case reached

This isn't tail-recursive:
```

fun fact (n) =
if }\textrm{n}<=1\mathrm{ then
1
else
n * fact (n-1)

```

This is:
```

fun fact(n) =
let fun fact_helper(n, res) =
if }\textrm{n}<=1\mathrm{ then
res
else
fact_helper(n - 1, res * n)
in
fact_helper(n, 1)
end
Craig Chambers
42

```

\section*{More patterns}
```

_ val [x,y] = 3::4::nil
val x = 3 : int
val y = 4 : int

```
- val (x::y::zs) \(=[3,4,5,6,7]\);
val \(x=3\) : int
val \(y=4\) : int
val zs \(=[5,6,7]\) : int list

Constants (ints, bools, strings, chars, nil) can be patterns:
```

- val (x,true,3,"x",z) =
(5.5,true, 3, "x", $[3,4]$);
val $x=5.5$: real
val $z=[3,4]$: int list

```

If don't care about some component, can use a wildcard:
```

_ val (_::_::zS) = [3,4,5,6,7];
val zs = [5,6,7] : int list

```

Patterns can be nested, too
- orthogonality
val root1 \(=0.786299647847\) : real
val root2 \(=\sim 2.11963298118\) : real

\section*{Function argument patterns}

Formal parameter of a fun declaration can be a pattern
```

- fun swap (a, b) = (b, a);
val swap = fn : 'a*'b -> 'b*'a
- fun swap2 x = (\#1 x, \#2 x);
val swap2 = fn : 'a*'b -> 'b*'a
- fun swap3 x =
let val (a,b) = x in (b,a) end;
val swap3 = fn : 'a*'b -> 'b*'a
- fun best_friend
{student={name=n, age=_},
grades=_,
best_friends={name=f,age=_}::_} =
n ^ "'s best friend is " ^ f;
val best friend = fn
: {best_friends:{age:'a, name:string} list,
grades:'b,
student:{age:'c, name:string}}

```

Patterns allowed wherever binding occurs, orthogonally

\section*{Missing cases}

What if we don't provide enough cases?
- ML gives a warning message "match nonexhaustive" when function is declared (statically)
- ML raises an exception "nonexhaustive match failure" if invoked and no existing case applies (dynamically)
- fun first_elem (x::xs) = x;

Warning: match nonexhaustive
\(x\) : : xs => ..
val first_elem \(=\) fn : 'a list \(->\) 'a
- first_elem [3,4,5];
val it = 3 : int
- first_elem [];
uncaught exception nonexhaustive match failure

How would you provide an implementation of this missing case?
- Unlike C, ML has no catch-all NULL pointer that could be returned

\section*{Multiple cases}

Often a function's implementation can be broken down into several different cases, based on the argument value

ML allows a single function to be declared via several cases
Each case identified using pattern-matching
- cases checked in order, until first matching case
```

- fun fib 0 = 0
fib 1 = 1
fib n = fib(n-1) + fib(n-2);
val fib = fn : int -> int
- fun null nil = true
| null (_::_) = false;
val null = fn : 'a list -> bool
- fun append(nil, lst) = lst
| append(x::xs,lst) = x :: append(xs,lst);
val append = fn : 'a list * 'a list -> 'a list

```

The function has a single type
\(\Rightarrow\) all cases must have same argument and result types

\section*{Exceptions}

If get in a situation where you can't produce a normal value of the right type, then can raise an exception
- aborts out of normal execution
- can be handled by some caller
- reported as a top-level "uncaught exception" if not handled

Step 1: declare an exception that can be raised
```

- exception Emptylist; exception EmptyList

```

Step 2: use the raise expression where desired
```

- fun first_elem (x::xs) = x
first_elem nil = raise EmptyList;
val first_elem = fn : 'a list -> 'a
- first_elem [3,4,5];
val it = 3 . int
- first_elem []
uncaught exception EmptyList

```

\section*{Handling exceptions}

Add handler clause to expressions to handle (some) exceptions raised in that expression

Syntax:
```

expr handle exn_name (=> expr_
| exn_name 2 => expr2
| _ => exprn

```
- this is an expression; each expr \(r_{i}\) must return same type as expr
- fun second_elem \(1=\) first_elem (tl l);
val second_elem \(=f n\) : 'a list -> 'a
- (second_elem [3]
handle EmptyList => ~1) + 5; val it \(=4\) : int

\section*{Exceptions with arguments}

Can have exceptions with arguments
- exception IOError of int;
exception IOError of int;
- (... raise IOError (-3) ...) handle IOError(code) => ... code ...;```

