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Abstract

One promising approach for adding object-oriented (OO) facili-
ties to functional languages like ML is to generalize the existing
datatype and function constructs to be hierarchical and extensible,
so that datatype variants simulate classes and function cases simu-
late methods. This approach allows existing datatypes to be easily
extended with both new operations and new variants, resolving a
long-standing conflict between the functional and OO styles. How-
ever, previous designs based on this approach have been forced to
give up modular typechecking, requiring whole-program checks to
ensure type safety. We describe Extensible ML (EML), an ML-like
language that supports hierarchical, extensible datatypes and func-
tions while preserving purely modular typechecking. To achieve
this result, EML’s type system imposes a few requirements on
datatype and function extensibility, but EmML is still able to express
both traditional functional and OO idioms. We have formalized a
core version of EML and proven the associated type system sound,
and we have developed a prototype interpreter for the language.

Categories and Subject Descriptors
D.3.3 [Programming L anguages]: Language Constructs and Fea-
tures—classes and objects, data types and structures, procedures,

functions, and subroutines; D.3.1 [Programming Languages]:
Formal Definitions and Theory—syntax, semantics

General Terms
Design, Languages, Theory
Keywords

extensible datatypes, extensible functions, modular typechecking

*An earlier version of this paper was presented at the Ninth Inter-
national Workshop on Foundations of Object-Oriented Languages
(FOOL 9), Portland, Oregon, January 19, 2002.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’ 02, October 4-6, 2002, Pittsburgh, Pennsylvania, USA.

Copyright 2002 ACM 1-58113-487-8/02/0010 ...$5.00

1 Introduction

Many researchers have noted a difference in the extensibility bene-
fits offered by the functional and object-oriented (OO) styles [28, 9,
25, 11, 19, 15, 30]. Functional languages like ML allow new oper-
ations to be easily added to existing datatypes (by adding new f un
declarations), without requiring access to existing code. However,
new data variants cannot be added without a potentially whole-
program modification (since existing functions must be modified
in place to handle the new variants). On the other hand, tradi-
tional OO approaches allow new data variants to be easily added
to existing class hierarchies (by declaring subclasses with overrid-
ing methods), without modifying existing code. However, adding
new operations to existing classes requires access to the source code
for those classes (since methods cannot be added to existing classes
without modifying them in place).

There have been several recent research efforts to integrate the
benefits of the functional and OO styles in the context of ML.
OCaml [26] adds OO features including class and method defini-
tions to ML. The OO constructs essentially form their own sub-
language which is largely separate from the existing ML dat at ype
and f un constructs. Adding a set of new constructs has the advan-
tage that existing language constructs are minimally affected by the
extension, retaining their traditional semantics and typing proper-
ties. Further, the augmented language addresses the expressiveness
differences of the functional and OO styles in a very simple way, by
providing both options. However, such simplicity comes at a cost
to programmers, who are forced to choose up front whether to rep-
resent an abstraction with datatypes or with classes. As described
above, this decision impacts the kind of extensibility allowable for
the abstraction. It may be difficult to determine a priori which kind
of extensibility will be required, and it is difficult to change the de-
cision after the fact. Further, it is not possible for the abstraction to
enjoy both kinds of extensibility at once.

An alternative approach is to generalize existing ML constructs
to support the OO style. OML [27], for example, introduces an
obj t ype construct for modeling class hierarchies. This construct
can be seen as a generalization of ML datatypes to be hierarchi-
cal and extensible. Therefore, programmers need not decide be-
tween datatypes and classes up front; both are embodied in the
obj t ype construct. However, OML still maintains a distinction be-
tween methods and functions, which have different benefits. New
methods may not be added to existing obj t ypes without modify-
ing existing code, while ordinary ML functions may be. Methods
dynamically dispatch on their associated obj t ype, while functions
support ML-style pattern matching.



ML< [3] integrates the OO style further with existing ML con-
structs. Like OML, ML< generalizes ML datatypes to be hierar-
chical and extensible. Further, methods are simulated via function
cases that use OO-style dynamic dispatching semantics. In this ap-
proach, programmers need not choose between two forms of exten-
sibility; a single language mechanism supports the easy addition of
both new operations and new variants to existing datatypes.

However, there are important ways in which ML< is not well in-
tegrated with existing ML language features. First, ML< does
not support ML-style pattern matching. Patterns are essentially
restricted to be top-level datatype constructor tests, which are the
analogue of dynamic dispatch tests in OO languages. Other com-
mon ML-style patterns and patterns on sub-components cannot be
programmed.

Second, extensible datatypes are of limited utility without exten-
sible functions, which allow existing functions to be updated with
new cases as new data variants are declared. However, ML< does
not support extensible functions: all function cases are provided
when a function is declared. The authors sketch a source-level lan-
guage that supports extensible functions. Unfortunately, this criti-
cal generalization of their work causes a loss of modular reasoning:
static typechecking of a program cannot be completed until link-
time, when all modules are available. Therefore, important software
engineering benefits are lost, including early detection of errors, li-
braries that are guaranteed to be typesafe in any context satisfying
their interface requirements, independent development of typesafe
modules by separate teams of programmers, and incremental mod-
ification (and subsequent incremental re-typechecking) of code.

The checks that must be delayed to link-time in ML< constitute
what we call implementation-side typechecking (ITC), which en-
sures that each function in the program is completely and unam-
biguously implemented [8].1 In traditional functional languages,
ITC checks each function for match nonexhaustive and match re-
dundant errors. Each function can be checked modularly, since a
function declaration includes all of its cases and datatypes are not
extensible. In traditional OO languages, ITC checks that each class
declares or inherits a most-specific method for each supported oper-
ation. Each class can be checked modularly, since a class declara-
tion includes all of its (non-inherited) methods and new operations
cannot be added to existing classes.

The implicit restrictions in the traditional functional and OO set-
tings that allow for modular ITC do not hold in the presence of ex-
tensible datatypes and functions. Unlike traditional functional lan-
guages, no module is guaranteed to have access to all of a function’s
cases. Unlike traditional OO languages, no module is guaranteed to
have access to all of a datatype variant’s associated functions and
function cases. Therefore, ML< is forced to perform ITC globally,
when the whole program is available.

In this work, we describe an ML-like language called Extensible
MLZ (EmL). EML introduces a cl ass construct, which is a form
of hierarchical, extensible datatype in the spirit of the constructs in
OML and ML<. As in ML<, methods are simulated by function
cases. In addition:

LImplementation-side typechecking contrasts with client-side
typechecking of functions, which checks that each function appli-
cation in the program is type-correct. Client-side typechecking is
standard and can be performed modularly.

Znot to be confused with Extended ML [18]

structure SetMd = struct
abstract class Set() of {}
class ListSet(es:int list) extends Set()
of {es:int list = es}
class ClListSet(es:int list, c:int)
extends ListSet(es) of {count:int = c}

fun add: (int * #Set) — Set
extend fun add (i, s as ListSet {es=es}) =
if (menber i es) then s else ListSet(i::es)
extend fun add (i, s as CListSet {es=es,count=c}) =
if (menber i es) then s else CListSet(i::es,c+l)

fun size:Set — int
extend fun size (ListSet {es=es}) = length es
extend fun size (CListSet {es=_ count=c}) =c

fun elems: Set — int |ist
extend fun elens (ListSet {es=es}) = es
end
Figure 1. A hierarchy of integer sets in EML.

e EML generalizes the OO dispatching semantics in ML< to al-
low arbitrary ML-style patterns. This generalization provides
idioms that are not expressible by either traditional functional
or OO languages.

e EML supports extensible functions while preserving purely
modular typechecking: each module can be typechecked
given only the interfaces of the modules it statically depends
upon (in a sense described later), with no whole-program
checks required. To make per-module implementation-side
typechecking sound without necessitating link-time checks,
EML’s type system imposes certain requirements via the no-
tion of a function’s owner position, which serves to coordinate
otherwise independent extensions to the function. The owner
position generalizes some of the properties of a method’s re-
ceiver in traditional OO languages, shedding new light on how
those languages achieve modular typechecking. Despite the
imposed requirements, EML’s classes and functions are still
able to simultaneously express traditional functional and OO
extensibility idioms. The requirements are adapted from our
earlier work on Dubious [22, 23], a calculus designed to ex-
plore modular typechecking for OO languages based on mul-
timethods.

The rest of the paper is organized as follows. Section 2 describes
EMmL by example. Section 3 discusses the challenges for performing
modular implementation-side typechecking in EML and presents
our solution to these challenges. Section 4 defines MINI-EML, a
core language for EML used to formalize our modular type system.
Section 5 describes how the features of EML interact with an ML-
style module system, including signature ascription and functors.
Section 6 discusses related work, and section 7 concludes. We have
proven the type system of MiNI-EML sound. A companion tech-
nical report [21] contains the complete formal dynamic and static
semantics of MiNI-EML as well as the type soundness proof.

2 EML by Example

Figure 1 shows an EML implementation of integer sets. Classes,
functions, and function cases are declared in ML-style structs. In
our discussion we assume that st ructs contain only those three
kinds of declarations. This assumption is lifted in section 5, which



describes the interaction of EML’s features with an ML-style mod-
ule system.

2.1 Classes

The Set class in figure 1 is the top of the integer set hierarchy.
The Li st Set class inherits from Set , implementing sets via lists.
The CLi st Set class inherits from Li st Set, additionally keeping
track of the number of elements in the set. A program’s subclass
relation is the reflexive, transitive closure of the declared ext ends
relation. Classes support only single inheritance. However, like
Java [1, 16], EmL supports a notion of i nt er f ace, and a class can
implement multiple interfaces. We ignore i nt er f aces in this pa-
per for simplicity. The Set class is declared abst ract, so it may
not be instantiated, while its subclasses Li st Set and CLi st Set are
concrete.

Each class declares a record type of its instance variables, using the
of clause. Superclass instance variables are inherited: the repre-
sentation type of a class C is the representation type (recursively)
of its direct superclass (if any) concatenated with the type in the of
clause in C’s declaration. For example, the representation type of
CListSet is{es:int |ist,count:int},since List Set’s repre-
sentation type is {es:int |ist}.

Each class declaration also implicitly declares a constructor, similar
to constructor declarations in OCaml [26] and XMOC [13], a core
language for Moby [12]. For example, the CLi st Set constructor
expects arguments es of type i nt i st and ¢ of type i nt, initial-
izes inherited instance variables via the call Li st Set (es) to the
superclass constructor, and initializes the new count instance vari-
able to ¢. In general, the arguments to the superclass constructor
call and the instance-variable initializers may be arbitrary expres-
sions. It would be straightforward to allow a class to have multiple
constructors by introducing a separate construct or declaration,
similar to “makers” in Moby.

Classes can be used to simulate ordinary ML-style datatypes. In
particular, an ML datatype of the form

datatype DT = C; of {Li1:T11,..., Lim: Tim} |
| G of {Lr1:Tr1, .. Leni Trn}

is encoded in EmL by the following class declarations:

abstract class DT of {}
class Ci(l11:T11, ..., I 1m: T1m) extends DT()
of {L11:T11=l11, ..., Lim' Tim=l 1m}

class G(lr1: Tty ..o Irni Trn) extends DT()
of {Lr1: Tr1=lr1, ... Len: Ten=l en}

Unlike the variants in ordinary ML datatypes, classes are full-
fledged types, and other classes may inherit from them.

A concrete class is instantiated by invoking its constructor. For ex-
ample, the result of Li stSet([5,3]) is an instance of Li st Set
representing the set {5,3}. Like values of ML datatypes, class in-
stances have no special object identity or mutable state; ref s can
be used in a class’s representation type for this purpose.

2.2 Functions and Function Cases

To make functions extensible, we break an ML-style function dec-
laration into two pieces. The f un declaration introduces a function

and specifies its type. The si ze function in figure 1, for example,
is declared to accept an instance of Set or a subclass and to return
an integer. The # in the add function’s argument type signifies that
the second argument to add is in the owner position. As a syntactic
sugar, the owner position of a function is assumed to be the entire
argument when no # is present in the function’s argument type. A
function and its cases must satisfy several requirements with respect
to its owner position, to ensure that the function can be modularly
checked for exhaustiveness and unambiguity. These requirements
are discussed in section 3. The owner position has no dynamic ef-
fect.

The extend fun declaration adds a case to an existing function.
The declaration specifies the name of the function being extended,
a pattern guard, and the new case’s body. There are two si ze func-
tion cases in figure 1, handling Li st Set s and CLi st Set s, respec-
tively. In a traditional OO language, these si ze cases would be
declared as si ze methods in the Li st Set and CLi st Set class dec-
larations. The ext end fun declaration is imperative, updating the
set of cases associated with the specified function rather than cre-
ating a new function containing the extra case. The imperative se-
mantics allows extensible functions to faithfully model OO-style
methods, which conceptually update a “generic function” consist-
ing of all methods that dynamically override some particular “top”
method. The imperative semantics is necessary to support common
OO idioms. For example, clients of an OO class hierarchy often im-
port only the abstract base class of the hierarchy, with any message
sends through that class’s interface dynamically dispatched to the
appropriate methods of (potentially unknown) concrete subclasses.

An ML-style function consisting of n function cases is encoded in
EmL as a f un declaration followed by n ext end fun declarations.
EmL functions can be passed to and returned from other functions,
like lambdas and ML-style functions. However, a function’s exten-
sibility is second-class: new cases may only be added to statically
known functions.

Patterns in EML subsume both OO-style dynamic dispatching and
ML-style pattern matching. For example, the second si ze case in
figure 1 is only applicable dynamically if the argument is an in-
stance of CLi st Set or a subclass, whose instance variables match
the given representation pattern (which in this case is fully general).
As usual, the pattern also binds identifiers for use in the case’s body.

An OO-style “best-match” policy decides which function case to
invoke; their order does not matter. Given an application of func-
tion f with argument value v, first the applicable cases of f for v are
retrieved. These are the cases that have a pattern that v matches. Of
the applicable cases, the unique case that is more specific than all
other applicable cases is invoked. Intuitively, case ¢ is more spe-
cific than case c; if the set of values matching c;’s pattern is a subset
of the set of values matching c,’s pattern. We call the invoked case
the most-specific applicable case. If a function application has no
applicable cases, a match nonexhaustive error occurs. If a function
application has at least one applicable case but no most-specific
one, a match ambiguous error occurs.

For example, consider the invocation si ze( CLi st Set ([ 5, 3], 2)).
Both si ze cases in figure 1 are applicable to the argument value,
and the second case is invoked because it is the more-specific one.
The “best-match” semantics contrasts with the traditional “first-
match” semantics of function cases in ML. The “first-match” se-
mantics does not generalize naturally to handle extensible datatypes
and functions, where typically the more-specific function cases are
written after the less-specific ones, as new data variants are defined.



structure Uni onVbd = struct
fun union: (#Set * Set) — Set
extend fun union (s1, s2) = fold add s2 (elenms si)

extend fun union (ListSet {es=el}, ListSet {es=e2}) =

Li st Set (nmerge(sort(el), sort(e2)))
end
Figure 2. Adding new functions in EML.

structure HashSet Mod = struct
class HashSet (ht: (int,unit) hashtable)
extends Set() of {ht:(int,unit) hashtable = ht}

extend fun add (i, s as HashSet {ht=ht}) =
i f containsKey(i,ht) then s
el se HashSet (put (i, (), ht))

extend fun size (HashSet {ht=ht}) = nunmEntries(ht)

extend fun elens (HashSet {ht=ht}) = keyList(ht)
end
Figure 3. Adding new data variants in EML.

Implementation-side typechecking ensures that match nonexhaus-
tive and match ambiguous errors cannot occur at run-time. Each
module’s typechecks include ITC for functions whose exhaustive-
ness and unambiguity may be affected by the module. These are
functions declared in the module, functions with cases declared
in the module, and functions that can accept instances of classes
declared in the module. For example, ITC of Set Mod in figure 1
checks the three functions declared there. Consider checking the
si ze function for exhaustiveness and unambiguity. Any Li st Set
instance will invoke the first si ze case, and any CLi st Set instance
will invoke the second si ze case. The Set class need not have a
most-specific applicable case, because Set is declared abstract.
Therefore, ITC for si ze succeeds. On the other hand, if the first
si ze case were missing, a match nonexhaustive error would be sig-
naled statically. Alternatively, if another si ze case with pattern
Li st Set {es=es} were declared, a match ambiguous error would
be signaled statically.

2.3 Adding New Functions

As with ML datatypes, but unlike traditional classes, EML supports
the easy addition of new functions to an existing class hierarchy.
For example, figure 2 adds a function for computing the union of
two Set s, without modifying any code in the Set Mbd module.® Two
uni on function cases are provided. The first case is applicable to
any pair of Set s. The second uni on case provides a more efficient
implementation for two Li st Set s. ITC of Uni onMobd checks uni on
for exhaustiveness and unambiguity. Any pair of Li st Sets and
CLi st Set s will invoke the second uni on case, so the function’s
check succeeds.

2.4 Adding New Data Variants

Unlike ML datatypes, classes in EML also support the easy addi-
tion of new data variants to existing hierarchies, without modifying
existing code. An example is shown in figure 3, which provides a

3Technically, all references to Set, Li st Set, add, and el ens
in Uni onMbd should instead be to Set Mbd. Set, Set Mbd. Li st Set ,
Set Mod. add, and Set Mod. el ens. For readability, we omit the full
path names in examples when clear from context.

structure SortedListSetMd = struct
class SListSet(es:int list) extends ListSet(es)

of {}

extend fun add (i, s as SListSet {es=es}) =
if (menber i es) then s else
let (lo,hi) = partition (fn j=>j<i) es
in SListSet(lo@i::hi)) end

extend fun union (SListSet {es=el},
SListSet {es=e2}) =
SLi st Set (mer ge(el, e2))

fun getMn: SListSet — int
extend fun getMn (SListSet {es=es}) = hd(es)
end
Figure4. Class hierarchies in EML.

new implementation HashSet of sets using an existing implemen-
tation (not shown) of hash tables. Implementations of add, si ze,
and el ens are provided for the new kind of set. In a traditional
OO0 language, HashSet Mbd corresponds to the declaration of a new
subclass of Set with some overriding methods. 1TC of HashSet Mbd
re-checks add, si ze, and el ens to ensure that they handle HashSet
instances. For example, if the new si ze case were not declared, a
match nonexhaustive error for si ze would be signaled statically.

HashSet Mod and Uni onMod from figure 2 illustrate EML’s support
for both OO and functional forms of extensibility in a single class
hierarchy. The original Set abstraction is flexibly reused by clients,
who add a specialized implementation (subclass) of the abstraction
and also augment the abstraction with client-specific functionality,
all without modifying existing code. HashSet Mbd and Uni onMbd
are completely independent: either, both, or neither module could
be linked into the final program. In this way, different versions of
the Set abstraction may be used in different programs, depending
on the needs of a particular application.

If both Uni onMbd and HashSet Mod are present in a program, then
HashSet implicitly supports the uni on operation and inherits any
applicable cases. This expressiveness is at the heart of the problem
of modular ITC. Because the two modules are independent, neither
is “aware” of the other during its static typechecks. Therefore, nei-
ther module’s ITC ensures that uni on is completely and unambigu-
ously implemented for HashSet s. In this example, uni on happens
to have a case that handles HashSet s (by handling any pair of sets).
Without extra requirements, however, things do not always work
out so well, as we show in section 3.

Another example of data-variant extensibility is illustrated in fig-
ure 4. A new subclass of Li st Set is created, representing an imple-
mentation of sets via sorted lists. SLi st Set inherits the representa-
tion type of Li st Set (adding no new instance variables) as well as
the applicable function cases of si ze and el ens. Overriding cases
of add and uni on are provided, as well as a new operation for ac-
cessing the minimum element of a set implemented as a sorted list.
ITC of SortedLi st Set Mod checks add, si ze, el ems, uni on, and
get M n to ensure exhaustiveness and unambiguity for SLi st Set s.

2.5 Parametric Polymorphism

EML supports a polymorphic type system. Class, function, and
function case declarations optionally bind type variables. Refer-



abstract class "a Set() of {}

class "a ListSet(es:"a list) extends 'a Set()
of {es:"a list = es}

class "a CListSet(es:"a list, c:int)
extends 'a ListSet(es) of {count:int =c}

fun "a add:
("a* #'aSet * ("a— "aSet — bool)) — "a Set
extend fun "a add (i, s as ListSet {es=es}, nenber) =
if (member i s) then s else "a ListSet(i::es)
extend fun "a add (i, s as CListSet {es=es,count=c},
menber) =
if (member i s) then s else "a CListSet(i::es,c+l)

Figure5. Polymorphic sets in EML.

ences to a polymorphic class or function specify a particular type
instantiation. As an example, figure 5 shows some of the declara-
tions for a polymorphic version of the sets in figure 1. Each class in
the set hierarchy is now parameterized by the element type, as is the
add function. Each function case is also explicitly parameterized,
allowing its function’s type variables to be renamed for use in the
case’s body. References to classes in a case’s pattern do not contain
type parameters. The appropriate type instantiation for such classes
can be inferred from the declared argument type (for example, the
reference to CLi st Set in the second add case’s pattern is implicitly
"a CListSet).

EmL’s polymorphic type system is deliberately simple in several
ways. First, EML is explicitly typed. Second, we require that sub-
classes have the same type variables as their superclasses. This
requirement is consistent with polymorphism in ML, where data
variants have the same type variables as their associated datatype.
Third, type parameters are invariant; for example, T Li st Set isa
subtype of T, Set if and only if T1=T,. Finally, there is no support
for bounded polymorphism, which would, for example, obviate the
need to explicitly pass the membership function to add.

We have chosen to make the polymorphic type system simple be-
cause polymorphism is orthogonal to the problems of modular ITC
that we address in this work. Those problems arise from the fact that
some related classes, functions, and function cases are not mod-
ularly “aware” of one another; the problems are neither reduced
nor exacerbated by polymorphic types. Therefore, our polymor-
phic type system could be generalized in standard ways without
affecting our results. For example, we could adopt ML <’s subtype-
constrained polymorphic types [3] and associated decidable type
system. Recent work [2] has presented a simplified account of
ML<’s type system and has additionally shown how to incorporate
a form of type inference.

3 Modular
checking

Implementation-side  Type-

This section focuses on the problem of modular ITC for EML. First
we define our notion of modular typechecking. Next we illustrate
the ways in which naive modular ITC is unsound. Finally we de-
scribe the requirements we impose to achieve modular type safety.

3.1 Modular Typechecking

We say that a language’s typechecking scheme is modular if it has
two properties. First, each module m can be typechecked given

only the interfaces of other modules (without requiring access to
the associated implementations). Second, m can be typechecked
given only those interfaces that m statically depends upon. Mod-
ule m statically depends upon interface i if either of the following
conditions holds:

o Module m refers to a name that is bound in i.

e Module m statically depends upon module interface i’, and i’
refers to a name that is bound in i.

Traditional functional languages can support modular typecheck-
ing. For example, each structure in ML could be typechecked given
only its statically depended-upon structure interfaces. A structure’s
interface is either an explicitly ascribed signature or else the struc-
ture’s principal signature. Similarly, each class in a standard OO
language can be typechecked given only the statically depended-
upon class interfaces. Informally, the interface of a class consists of
its list of superclasses, the types of its visible fields, and the headers,
but not bodies, of its visible methods.

A modular typechecking scheme for EML must typecheck each
structure given only the interfaces it statically depends upon. \We
implicitly use a structure’s principal signature as its interface. The
principal signature of an EmL structure includes all of its class and
function declarations, as well as the headers (but not the bodies) of
all function case declarations. Explicit signatures provide a richer
notion of structure interface, as described in section 5. Classes,
functions, and cases that are declared in m or specified in an inter-
face upon which m statically depends are said to be available during
the typechecking of m. All other classes, functions, and cases are
unavailable and may not be considered during the typechecking of
m.

Our definition of modular typechecking validates the intuition that
uni on of figure 2 and HashSet of figure 3 are not “aware” of
one another. Neither Uni onMbd nor HashSet Mbd statically depends
upon the other’s interface. Therefore, HashSet is unavailable dur-
ing modular typechecks on Uni onMbd and uni on is unavailable dur-
ing modular typechecks on HashSet Mbd, so neither module’s type-
checks ensure that uni on properly handles HashSet s.

3.2 Implementation-side  Typechecking and
Modularity

Consider ITC for an EML module m. A straightforward approach
to modular ITC checks each of m’s available functions f for ex-
haustiveness and unambiguity, given all available function cases
and classes. We call this approach naive modular ITC. Unfor-
tunately, naive modular ITC is unsound. The hierarchy of EML
classes in figure 6 illustrates the kinds of problems that can occur.
Naive modular ITC in ShapeMd checks i ntersect for exhaus-
tiveness and unambiguity. Since ShapeMd doesn’t statically de-
pend upon any interfaces (other than its own), the check succeeds
vacuously: Shape is abstract and so need not have an i nt er sect
implementation. Since Gircl eMd declares a new intersect
case, i ntersect is again checked during naive modular ITC in
CircleMd. CircleMd statically depends on the interface of
ShapeMbd but not that of Rect Mbd, so Ci r cl eMbd’s check does not
consider the Rect class.* Therefore, the only argument to check
from Circl eMod is a pair of two Gircles. The i ntersect case
in C rcl eMbd is most-specific for two Circl es, so i ntersect is

4Indeed, RectMbd may not even have been written when
G rcl eMod is typechecked.



structure ShapeMbd = struct
abstract class Shape() of {}
fun intersect: (#Shape * Shape) — bool
end
structure GrcleMd = struct
class Circle() extends Shape() of {}
extend fun intersect(Crcle _, Shape ) = ---
end

structure RectMd = struct
class Rect() extends Shape() of {}
extend fun intersect(Shape _, Rect ) = .-
fun print: Shape — unit
extend fun print(Rect ) = ...

end

Figure 6. Challenges for modular implementation-side typechecking.

found to be exhaustive and unambiguous. By similar reasoning,
i ntersect passes the checks from Rect Mod, since Rect Mbd does
not statically depend on the interface of Gi r ¢l eMbd.

Therefore each module typechecks, with naive modular ITC declar-
ing the i nt er sect function to be both exhaustive and unambigu-
ous. However, intersect has neither of these properties. If
i ntersect is invoked on a pair of a Rect and a Gircle (in
that order), a match nonexhaustive error will occur since neither
i ntersect case is applicable. If i ntersect is invoked on a pair
of aGircle and a Rect (in that order), a match ambiguous error
will occur since both i nt er sect cases apply but neither is more
specific than the other.

A final problem concerns the print function in Rect Mod. Since
Rect Mod does not statically depend on Gircl eMd’s interface,
Rect Mbd’s naive modular ITC finds pri nt to be exhaustive and un-
ambiguous. However, if a Ci rcl e is ever passed to pri nt, a match
nonexhaustive error will result.

3.3 Achieving Modular ITC

As we have seen, naive modular ITC is too permissive, allowing
forms of extensibility that are not typesafe. To address this problem,
we augment naive modular ITC with some requirements on EML
modules that ensure the soundness of ITC. A fundamental design
goal is that the requirements still allow the use of both functional
and OO extensibility idioms in a single class hierarchy. We are
willing to sacrifice other kinds of extensibility allowed by naive
modular ITC to support the traditional functional and OO idioms in
a modularly typesafe manner.

Functional languages allow a new function to be added to an ex-
isting datatype. Therefore, EML must allow a new function to be
added to an existing class. OO languages allow a new subclass to be
added to an existing class, along with associated overriding meth-
ods that have the new subclass as their receiver. To formulate this
idiom in EmML we employ a function’s owner position, which gen-
eralizes a similar notion in the Dubious language [22]. A function’s
owner position has some properties in common with the receiver
position in standard OO languages. Rather than forcing the owner
position to be the “first” argument to a function, it can be specified
as an arbitrary (and arbitrarily nested) position of the argument, via
the # in a function’s declared argument type. The type at the owner
position in a function’s argument type must be a class; that class
is the function’s owner. For example, Set is the owner of add in
figure 1. To express the OO extensibility idiom in EML, we must
allow a new subclass to be added to an existing class C, along with
overriding cases of functions for which C is the owner.

For the purposes of our modular requirements, we partition func-
tions into two categories. A function is called internal if it is de-
clared in the same module as its owner; otherwise the function is

external. An internal function is guaranteed to be available to all
modules that declare subclasses of the function’s owner, while that
is not true of an external function. Therefore, an internal function
can be thought of as part of the “initial” interfaces of its owner class
and subclasses, while an external function is a later extension to
those interfaces. External functions have no analogue in traditional
OO0 languages, in which a class’s methods must all be declared with
the class. The special properties of internal functions are exploited
in one of our three requirements, which are now discussed in turn.

3.3.1 Completeness Requirement for External Func-
tions

Consider the completeness problem with the print function in
Rect Mod in figure 6. Because new subclasses can be added to ex-
isting classes, some subclasses of a function’s owner may not be
available in the function’s module. Indeed, Ci r cl e is not available
in print ’s module. On the other hand, because pri nt is external,
there is no guarantee that print will be available to all modules
declaring subclasses of Shape. Indeed, print is not available to
Gircl e’s module. Therefore, to modularly ensure that print is
complete, we require its module to contain a global default case.
A global default is a case whose pattern is applicable to all type-
correct arguments to the function. In general, we require a module
that declares an external function to include a global default case
for the function.

Therefore, ITC on Rect Mod fails, because the global-default re-
quirement is not satisfied for its external function print. If print
had a case with, for example, pattern ( Shape {}), then the require-
ment would be satisfied and the completeness problem for Circl e
would be avoided. As another example, the external function uni on
in figure 2 satisfies the requirement because its first case is a global
default, thereby handling the unavailable HashSet class of figure 3
and any other unavailable Set subclasses.

The global-default requirement does not impose an extra burden
from the point of view of standard OO languages, as such languages
do not even allow external functions to be declared. However, stan-
dard functional languages do allow external functions, without re-
quiring global default cases. Those languages disallow data-variant
extension, so an external function can be modularly checked against
all possible data variants. EmML’s modular ITC must allow for the
possibility of unavailable subclasses of a function’s owner, thereby
sometimes requiring the declaration of global default cases that will
never be used. Section 5 introduces a mechanism for sealing class
hierarchies, which can obviate the need for global default cases.

3.3.2 Completeness Requirement for Internal Func-
tions

Consider the incompleteness for a pair of one Rect andone Gircl e
inthe internal i nt er sect function of figure 6. One way to solve the



problem would be to require a global default case, as we require for
external functions. Indeed, if ShapeMbd contained an i nt er sect
case that is applicable to any pair of Shapes, the incompleteness
would be resolved. While requiring global default cases solves the
problem, it is unnecessarily burdensome. As mentioned earlier, an
internal function is guaranteed to be available to all modules declar-
ing subclasses of the function’s owner. Therefore, rather than re-
quiring the function’s module to handle all unknown subclasses,
we can require each module that declares a concrete subclass of the
function’s owner to ensure completeness for its subclass. This idea
is inspired by standard OO languages, in which a method in an ab-
stract class may safely remain unimplemented, with each concrete
subclass declaring or inheriting a concrete implementation of the
method.

Our requirement is that each module declaring a concrete subclass
C of an internal function’s owner must also declare or inherit a local
default case for the function. A local default case of a class C is
a case whose pattern accepts only instances of C and subclasses
at the owner position, while every other argument position can be
passed any value of the appropriate type. Local default cases are
the EML analogue of traditional OO methods, which dispatch on the
surrounding class at the receiver position and do not dispatch on any
other argument position. A class’s local default cases ensure that
the class completely implements all of the functions in its “initial”
interface.

Given the local-default requirement, ITC on RectMd fails to
typecheck because it does not declare or inherit a local default
i ntersect case for Rect. (An isomorphic error would occur in
Circl eMbd if the second argument position in the pair were desig-
nated the owner position.) The requirement would be satisfied, for
example, if Rect Mbd had ani nt er sect case with pattern (Rect _,
Shape _), accepting Rect s at the owner position and accepting all
Shapes in the other position. That case resolves the incompleteness
for a pair of one Rect and one G rcl e. A global default case need
not be written: i nt er sect may still be safely left unimplemented
for two Shapes. As another example, the internal add function in
figure 1 does not have a global default case. Instead, it has local de-
fault cases for its two concrete subclasses Li st Set and CLi st Set .
When HashSet is introduced in figure 3, an associated local default
is also declared, satisfying the requirement and ensuring that add is
complete for HashSet s.

The local-default requirement does not impose an extra burden from
the point of view of standard OO languages. Whenever a local de-
fault case of some internal function f is required for a class C, an
OO0 language would require C’s declaration to contain an f method,
so that C is properly implemented. Therefore, the abstract-class id-
ioms of traditional OO languages are preserved in EML. However,
standard functional languages do allow internal functions, without
requiring local default cases. As above, this is possible because
such languages disallow data-variant extension. EML’s ITC must
always assume the possibility of unavailable subclasses of classes in
non-owner positions of a function’s argument type, thereby some-
times requiring the declaration of local default cases that will never
be used. Again, we can use sealing, discussed in section 5, to obvi-
ate the need for local default cases.

3.3.3 Ambiguity Requirement
In figure 6 the two i ntersect cases are ambiguous, but neither

Circl eMbd nor Rect Mod statically depends upon the other, so the
ambiguity is not modularly detected. We address this problem by

restricting EML’s function extensibility such that cases declared in
modules that do not statically depend upon one another are guaran-
teed to be disjoint: the cases are not applicable to a common value
and hence are not ambiguous. Our restriction generalizes the im-
plicit restrictions in standard functional and OO languages. First
we introduce the concept of a function case’s owner, which is the
class (if any) at the owner position of the case’s pattern. For ex-
ample, Li st Set is the owner of the second uni on case in figure 2
because it appears at the owner position, while the first uni on case
has no owner.

In functional languages, each case must be declared in the mod-
ule that declares the associated function. In OO languages, each
method must be declared inside the method’s receiver. Our require-
ment is the disjunction of these conditions: every function case
must either be declared in the module that declares the case’s func-
tion or in the module that declares the case’s owner (if any).

Rect Mod now fails to typecheck because its i nt er sect case does
not satisfy our requirement: neither i ntersect nor Shape, the
case’s owner, is declared in Rect Mod. (An isomorphic error would
occur in Circl eMd if the second argument position in the pair
were designated the owner position.) Therefore, Rect Mod may not
extend i nt er sect in that way. The requirement can be satisfied,
for example, by modifying the i nt er sect case’s pattern to ( Rect
_, Shape _). This modification resolves the ambiguity for a pair
of a Circle and a Rect, since the revised case is no longer ap-
plicable. As another example, the add cases in HashSet Mod and
Sort edLi st Set Mod of figures 3 and 4 are never compared for am-
biguity, because the two modules do not statically depend upon one
another. However, each case satisfies our requirement by following
the traditional OO idiom of implementing an overriding method for
a newly declared subclass. Therefore the two cases are guaranteed
to be disjoint.

Since our ambiguity requirement is the disjunction of the implicit
requirements in standard functional and OO languages, our require-
ment does not restrict those programming styles and allows them to
coexist. Therefore, we have achieved our design goal of allowing
the functional and OO extensibility idioms in a single class hier-
archy while preserving modular type safety.> However, other use-
ful kinds of extensibility are disallowed by the ambiguity require-
ment. For example, a client of both Uni onMbd and HashSet Mod
from figures 2 and 3 may want to implement uni on specially for
HashSet s, so that these independent extensions of the Set abstrac-
tion will work well together. However, the new case would violate
our ambiguity requirement, so HashSet s are forced to use the de-
fault uni on case (or HashSet Mod must be modified in place to add
the new case).

4 Mini-Eml

This section describes MINI-EML, a core language used to formal-
ize the fundamental ideas in EML. We give the full dynamic seman-
tics but only a brief introduction to the static semantics. The com-
plete details of MINI-EML are available in our companion technical
report [21].

5In the presence of multiple implementation inheritance, other
kinds of ambiguities that elude modular detection can arise, neces-
sitating an extra requirement [23]. However, multiple interface in-
heritance, as in Java, cannot cause such ambiguities.



4.1 Syntax

Figure 7a defines the syntax of types, expressions, and patterns in
MINI-EML. The syntax is essentially that of EML as informally
presented so far, but we omit standard constructs including base
types, conditionals, lambdas, local variables, references, and ex-
ceptions. The domain Mt represents marked types, which contain
a # mark on a single component class type. The instance expres-
sion Ct {V = E} is not available at the source level, as instances
may only be created via a constructor call Ct(E). The construct
{V = E} differs from an ordinary record in two ways. First, the la-
bels are scoped: the name of the structure in which an instance vari-
able was introduced becomes part of the instance variable’s name.
In the presence of the ability to make instance variables private (see
section 5), scoping allows subclasses to introduce a new instance
variable without conflicting with the name of a hidden one in the
superclass. Instance variables in EML use this mechanism implic-
itly; regular static scoping rules determine which instance variable
is referred to. Second, for simplicity the components of {V = E}
are ordered, unlike traditional records.

The notation and semantic style of MiINI-EML were influenced by
Featherweight Java [17], a core language for Java. As in that lan-
guage, we formally represent classes by their names. A class is
uniquely represented as Sn.Cn, where Cn is the name of the class
and Sn is the name of the structure that declares Cn. Extensible
functions are represented similarly.

The subset of expressions that are MINI-EML values is described
by the following grammar, which includes class instances, function
values, and tuple values:

vi=Ct{V=v}|Fv|(V)

The syntax of structures and declarations is shown in figure 7b. For
convenience in the core language, each structure explicitly names
the other structures (often including itself) whose interfaces it stat-
ically depends upon, via the depends upon Sn clause. ITC for a
structure employs only the interfaces of the structures named in the
depends upon clause. The static semantics ensures that the given
dependency relation is well-formed, as described below. The syntax
of the three declarations is faithful to that of EmML, except that cases
now contain a case name Mn. This name is used in the semantics to
uniquely identify each function case declaration (see section 4.2).

Analogous with Featherweight Java, a MINI-EML program is a pair
of a structure table and an expression. A structure table is a finite
function from structure names to the associated structure declara-
tions. The semantics assumes a fixed structure table denoted ST.
The structure table ST is accessed by the dynamic and static se-
mantics rules when information about a given OO declaration is
required. The domain of a structure table ST is denoted dom(ST).

4.2 Dynamic Semantics

MINI-EML’s dynamic semantics is defined as a mostly standard
small-step operational semantics. The metavariable p ranges over
environments, which are finite functions from identifiers to values.
We use |D| to denote the length of the sequence D. The nota-
tion [Iy — Eg,...,lx — Ek]D denotes the expression resulting from
the simultaneous substitution of E; for each occurrence of I; in D,
for 1 <i <k, and similarly for [a1 +— T1,...,0k — T]|D. We use

[I — E]D as a shorthand when I and E have the same length, and
similarly for [@ — T|D. In a given inference rule, fragments en-

closed in <> must either be all present or all absent, and similarly
for <<>>. We sometimes treat sequences as if they were sets.
For example, Ood € Ood means that Ood is one of the declara-
tions in Ood. We use Ood € ST(Sn) as shorthand for ST(Sn) =
structure Sn = struct depends upon Sn Ood end and Ood €
Ood.

Figure 8a contains the rules for evaluating expressions. For simplic-
ity in the semantics, E-NEw defines constructor calls as syntactic
sugar for instance expressions. It would be straightforward to in-
stead use a call-by-value semantics for constructor calls, at the cost
of some additional mechanism. E-NEw makes use of the first two
auxiliary rules in figure 8b. CONCRETE checks that the class to
be instantiated was declared without the abst ract keyword. REP
initializes the fields of the new instance as directed by the class’s
implicit constructor.

The last rule in figure 8b formalizes function-case lookup, used in
E-APPRED. The top line of LOOKUP’s premises specifies the case
to invoke, and the second line ensures that the chosen case is ap-
plicable. The remaining premise ensures that the chosen case is
most-specific: the case is strictly more specific than any other ap-
plicable case. The condition Sn.Mn = Sn’.Mn’ uses the case names
to ensure that the chosen case is not compared for specificity with
itself.

The rules for pattern matching and specificity are shown in fig-
ure 9, completing the dynamic semantics. The matching rules are
straightforward except for E-MATCHCLASS. The notation C < C’
denotes that (C,C’) is in the reflexive, transitive closure of the de-
clared class ext ends relation. E-MATCHCLASS recursively pat-
tern matches on the instance variables, unlike traditional OO lan-
guages and ML<. We allow an instance to have more instance
variables than the given representation pattern, so that subclass
instances can match superclass patterns. For example, the value
CLi st Set {es=[5, 3], count =2} matches the pattern in the el ens
case of figure 1.

The judgment Pat < Pat’ means that Pat is at least as specific as
Pat’. The pattern specificity semantics generalizes OO-style “best-
match” semantics to support ML-style patterns. Class pattern speci-
ficity (SPECCLASS) follows the ordering induced by subclassing.
Analogous with E-MATCHCLASS, the more-specific pattern may
contain extra instance variables. The natural rule SPECTuP for tu-
ple patterns makes pattern specificity a generalization of the “sym-
metric” multimethod specificity semantics in OO languages [6, 7].
When a tuple is used to send multiple arguments to a function, tu-
ple patterns allow all arguments to be dynamically dispatched upon,
and no argument position is more important than the rest. This
contrasts with traditional single dispatch, as in Java, where only a
unique receiver argument may be dispatched upon.

4.3 Satic Semantics

Figure 10 contains the rules for typechecking structures and OO
declarations. T_is a type environment, mapping identifiers to types.
The notation Mt denotes the type T equivalent to Mt, but with the #
mark removed. Structures are typechecked (STRUCTOK) by check-
ing each declaration in turn. It is assumed that S OK holds for each
structure S in the range of ST.

The rules for typechecking the three OO declarations are largely
straightforward. The premises rely on several kinds of judgments.
A judgment of the form @ - T OK ensures that T is a well-formed
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Figure 7. (a) MINI-EML types, expressions, and patterns; (b) MINI-EML structures and declarations. Metavariable a ranges over type
variable names, | over identifier names, Sn over structure names, Cn over class names, VVn over instance variable names, Fn over function
names, and Mn over case names. D denotes a comma-separated list of elements (and is independent of any variable named D). Angle brackets
(<>) and double angle brackets (< <>>) denote independent optional pieces of syntax. The notation V = E abbreviates V3 = Ey, ...,V = Ex
where V isVq,...,Vkand E is Eq,...,V, for some k > 0, and similarly for V = Pat, Vn:Tg = Ep, and T : T.
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Figure 8. (a) Evaluation rules for expressions. (b) Auxiliary inference rules. The notation (T,v) abbreviates (I1,v1),..., (Ik,Vk); Sn.Vn=E

abbreviates Sn.Vn; = Ey,...,Sn.Vng = Ey.
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Figure9. (a) Pattern matching. (b) Pattern specificity. The notation match(v, Pat) = p abbreviates match(vy,Pat; ) = p; - - - match(v, Paty) =

Pk, and similarly for Pat; < Pat;.
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Figure 10. Static semantics of structures and OO declarations.
The notation Sn - Ood OK in Sn abbreviates Sn - Ood; OK in Sn
---8n + Oody OK in Sn; o T OK abbreviates o - 14 OK --- O -
Tk OK; (1,7T) abbreviates (11,11),...,(lx,T); ;@ + E : T abbrevi-
ates ;O FE; 1y --- ;0 F Ex: Tk Ty < Tp abbreviates 117 < Tp1
o Tk < Toke

type: only type variables in @ are referred to in T, and each class
in T has the correct number of type parameters. A judgment of the
form 11 < 12 denotes that 14 is a subtype of 1,; the subtyping rela-
tion is completely standard [5]. A judgment of the form ;G HE : T
ensures that expression E has type T, in the context of the current
type environment and sequence of type variables in scope. A judg-
ment of the form ;@ - Ct(E) OK is used in CLASSOK to ensure
that the superclass constructor call is well-formed. A judgment of
the form matchType(t,Pat) = (I, T’) ensures that a case’s pattern
Pat is compatible with the associated function’s declared argument
type T; the type environment " contains bindings for the identifiers
in Pat and is used to typecheck the case’s body.

The “transDependedUpon” and “dependedUpon” judgments in
CLASSOK and CASEOK check properties of a structure’s declared
depends upon relation. The first judgment ensures that a struc-
ture containing a class is declared to depend upon all structures that
declare a (reflexive, transitive) superclass of the class. The sec-
ond judgment ensures that a structure containing a function case
is declared to depend upon the structure containing the associated
function. In either case, if Sn is required to declare a dependency on
Sn’, then Sn does indeed statically depend upon Sn’ according to the
definition of static dependency given in section 3.1. The declared
dependency relation may include more structures than are statically
depended upon, but the soundness proof relies only on the above
two properties of the declared dependency relation, thereby ensur-
ing that modularity is respected.

Finally, each of the rules for typechecking declarations enforces
one of the three modular requirements described in section 3.3.
CLASSOK enforces the local-default requirement on the new class
(“funs-have-ldefault-for”), if it is concrete. FUNOK enforces the

structure BadMbd = struct
class () of {}
fun f:C — unit
val bad = f(C())
extend fun f (C{}) = ()
end
Figure 11. Value declarations and ITC.

global-default requirement on the new function (“has-gdefault”), if
it is external. CASEOK enforces the ambiguity requirement and
explicitly checks ambiguities of the new case with any available
function cases (“unambiguous™).

4.4 Type Soundness

We have proven type soundness for MINI-EML. As usual, we prove
type preservation and progress theorems. The notation - E : T de-
notes the typechecking of E in the context of the empty type envi-
ronment and empty sequence of type variables.

THEOREM 1. (Type Preservation) If - E : T and E — E’, then
there exists T/ such that - E’ : T/ and U < 1.

THEOREM 2. (Progress) If - E : T and E is not a value, then there
exists E’ such that E — E’.

Proving type preservation is straightforward, as it is completely in-
dependent of ITC. Proving progress requires reasoning about mod-
ular ITC, in order to show that function applications can always
make progress. The key lemma says that a most-specific applicable
function case exists for each type-correct application:

LEMMA 1. If FFv:T; —Tand Fv:T,and 15 < T, then there
exist p and E such that most-specific-case-for (Fv,v) = (p,E).

Details are available in our companion technical report [21].

5 ML-StyleModules

This section discusses how EML’s features can interact with an ML-
style module system including structures, signatures, and functors.

5.1 Sructures

Thus far we have assumed that EML structures contain only a se-
quence of class, function, and function case declarations. We would
also like to accommodate the ordinary ML declarations, including
value, type, exception, and structure declarations. The latter three
kinds of declarations can be straightforwardly incorporated, but
special care is needed to handle value declarations. Figure 11 shows
an example of the problems that can occur. ITC on BadMbd will
succeed, because function f has an appropriate case for C. How-
ever, at run-time a match nonexhaustive error will occur when the
val declaration is executed, because f ’s function case will have not
yet been declared.

There are several approaches to handling this problem. We could
adopt a two-pass style of structure evaluation. The first pass would
evaluate all of the declarations except the value declarations, and
the second pass would evaluate the value declarations. In our ex-
ample, this semantics ensures that f °s function case is declared be-
fore f is invoked. An alternative approach is to make the unit of
modularity used in our ITC requirements more fine-grained than an
entire structure, with val declarations forming the boundaries of



signature ShapeSig = sig
abstract class Shape() of {}
fun bad: Shape — unit
extend fun bad s
end
structure ShapeMbd = struct
abstract class Shape() of {}
fun print: Shape — unit
fun bad: Shape — unit
extend fun bad s = print s
end : ShapeSig
structure G rclehd
class Gircle() extends Shape() of {}
end
Figure 12. Unsoundnesses with hiding OO declarations.

these units. For example, BadMod would consist of two units, one
of which contains the first two declarations and the other contain-
ing the last declaration. When ITC is performed on the first unit,
the incompleteness of f for C would result in a static error. Our
prototype EML interpreter uses a variant of this approach. Instead
of inferring the modular units, we introduce a new kind of OO dec-
laration of the form Ood and Ood’ (similar syntactically, but not
semantically, to the and construct in ML), which groups a sequence
of class, function, and function case declarations. A group of anded
OO declarations is treated as a unit for the purposes of modular ITC.

5.2 Sgnature Ascription

Signature ascription provides information hiding in ML. Clients of
a structure expression of the form S : Sig, where Sig is a signa-
ture, may only access S’s components via the interface provided
in Sig. Signature ascription for EmML provides forms of OO-style
encapsulation. For example, classes, functions, and function cases
can be hidden from clients, making them private to their enclosing
structure. However, these declarations cannot be hidden arbitrar-
ily, or else modular ITC would become unsound. Figure 12 shows
a simple example of the problems that can occur. ShapeMbd cre-
ates the abstract Shape class and two associated functions. ITC in
ShapeMbd finds print to be exhaustive and unambiguous, since
Shape is abstract. Ascription to the ShapeSi g signature hides
print. Therefore, print is not part of ShapeMd’s interface, so
print is not available to G rcl eMdd and is therefore not checked
again for exhaustiveness and unambiguity. I1f a G rcl e instance is
passed to bad, however, print will be invoked, causing a match
nonexhaustive error.

Our example is purposely similar to the pri nt example in figure 6.
In that case, the ITC requirements ensure that the problem is mod-
ularly detected. The same solution can be used here: a set of decla-
rations can be safely hidden if that set could have been written as a
separate module that passes modular ITC [23]. The pri nt function
in figure 12 does not satisfy this condition. If print were in its
own module, the type system would force the existence of a global
default case for pri nt, which is now an external function. If pri nt
had such a case, then the function (and that case) could be safely
hidden via signature ascription, and the problem for G r cl e would
be resolved.

Aside from hiding entire declarations, it is useful to hide certain
properties of a declaration. Several properties of classes may be
hidden. First, a subset of a class’s instance variables may be hid-
den. As mentioned in section 4, instance variables are scoped —

structure PointMd = struct
abstract class Point()
fun draw Point — unit
end
signature APointSig = sig
class APoint(x:int,y:int)
extends Point of {x:int,y:int}
extend fun draw (APoint {x=x,y=y})
end
functor Colorize(M APointSig) = struct
class Col orPoint(x:int,y:int,color:int)
extends M APoint(x,y) of {color:int=color}
extend fun draw
(Col or Poi nt {x=x,y=y, color=color}) = ...
fun getCol or: Col or Point — int
extend fun getCol or
(Col orPoi nt {x=x, y=y, col or=col or}) = color
end
Figure 13. Idioms involving EML functors.

the name of the structure declaring an instance variable is implic-
itly part of the name of the instance variable. Therefore, there is no
conflict if a subclass in a new module creates an instance variable
of the same name as a hidden one in the superclass. A concrete
class can also be viewed as an abstract one, thereby disallowing
clients from instantiating the class. Finally, a signature can declare a
class C seal ed [29], which prevents classes declared outside of C’s
module from directly subclassing C. This construct can be used to
faithfully model ML-style (non-extensible) datatypes. Our modular
requirements can be relaxed in the presence of sealed hierarchies.
For example, if an external function’s owner and all available sub-
classes are sealed, then the function need not have a global default
case, as in ML.

A function may be sealed by ascribing it and all associated cases to
an ordinary ML-style value specification. Clients may still invoke
the function but its extensibility is hidden, so clients may not add
new cases. Therefore, function sealing allows us to model ML-style
(non-extensible) functions. Function sealing is allowed under the
same circumstances that the function and its cases may be hidden.
Finally, a specification of the form val 1 : 1 may be replaced by val
I : T/, where T’ is a supertype of T.

Several forms of information hiding are not captured by our ascrip-
tion rules. 1t would be useful to ascribe a class declaration to one
that specifies only a transitive, rather than direct, superclass. Unfor-
tunately, this flexibility makes modular ITC unsound. For example,
a client of two classes C and C’ can write ambiguous function cases
that appear to be disjoint, and therefore pass static checks, if the
fact that C subclasses C’ is hidden from the client. It would also be
useful to ascribe a class declaration to a type declaration, possibly
augmented with Modula-3-style partial revelations [24] to reveal
some of the class’s underlying structure.

5.3 Functors

In the presence of EmL’s features, functors can provide a great
deal of flexibility. Figure 13 illustrates the kinds of idioms we
would like to express. The Col ori ze functor implements a form of
mixin [4, 11, 14], which is a class parameterized by its superclass.
The functor creates a colored version of some unknown subclass
APoi nt of Poi nt. An overriding case for the existing dr aw func-
tion is given, in order to draw colored points specially. The functor



also introduces a new function for accessing the color of a colored
point, with an associated case.

We would like to perform modular ITC once on a functor body,
guaranteeing completeness and unambiguity of all relevant func-
tions no matter how the functor is instantiated. The major challenge
for modular ITC of functors like Col ori ze is the fact that the iden-
tities of some classes, for example M APoi nt , are unknown. Instead
we have only partial information about the relationship between
M APoi nt and other classes. To address this challenge, we can
generalize the subclass relation in the static semantics to be three-
valued, conservatively saying “don’t know” when the partial class
hierarchy information is inconclusive. We then appropriately gen-
eralize modular ITC to be conservative with respect to three-valued
subclassing. Consider performing ITC on the body of Col ori ze.
Although the identity of M APoi nt is unknown, its relationship to
Col or Poi nt is known, and this is enough information for modular
ITC on dr awto succeed. We have formalized this three-valued se-
mantics in an earlier version of MINI-EML but have not proven it
sound.

The restrictions on signature ascription described earlier limit the
expressiveness of our Col ori ze functor. For example, the functor
can only be instantiated with a class APoi nt that is a direct sub-
class of Poi nt, rather than a transitive one. Also, APoi nt ’s mod-
ule must contain a draw case with exactly the pattern described
in APoi nt Si g, and the module can have no other dr aw cases for
APoi nt (e.g. a special case to handle the origin). However, we can
safely remove these restrictions if we are willing to move some of
the burden of ITC to clients of the functor. For example, we can al-
low APoi nt to be instantiated with a transitive subclass of Poi nt on
the condition that the resulting structure passes modular ITC. In the
limit, this approach performs modular ITC once per instantiation
of the functor, where the identities of all classes are known, rather
than once on the functor body. However, it is possible that most of
ITC could still be performed on the functor body in isolation, with
only a few additional checks performed per instantiation.

6 Reated Work

OML [27] and ML< [3] were described earlier. Zenger and Oder-
sky [30] describe an extensible datatype mechanism in the context
of an OO language. Extending a datatype has the effect of creat-
ing a new datatype that subtypes from the original one. To ensure
exhaustiveness in the presence of datatype extension, all functions
on extensible datatypes must include a global default case, while
EmL often requires only local defaults. Because Zenger’s functions
are not extensible, if new data variants require overriding function
cases, a new function must be created that inherits the existing func-
tion cases and clients must be modified to invoke the new function.
Like OML, Zenger’s language includes both OO-style methods and
ML-style functions. Zenger’s language also retains a distinction be-
tween datatype “cases” and regular OO classes. Because Zenger’s
language supports subtyping between entire datatypes (rather than
individual variants), it can provide more precise types than EML.

Garrigue shows how to use polymorphic variants, which are vari-
ants defined independent of any particular datatype, to obtain both
modular data-variant and function extensibility in ML [15]. How-
ever, unlike EML, both kinds of extensibility require advance plan-
ning. When defining a type as a set of polymorphic variants, an
extra type parameter must be used in place of recursive references
to the type, to allow for future extension. Similarly, a function must
take an extra parameter function to invoke in place of recursive ref-
erences. As in Zenger’s language, when a function is extended any

clients that require the new functionality must be modified. Unlike
EmL, polymorphic variants preserve ML-style type inference.

Previous work on unifying functional and OO dispatching [10] pro-
vides ITC for patterns that are more general than those in EML, in-
cluding conjunctions, disjunctions, and negations of arbitrary pred-
icates. However, the ITC algorithm requires access to the entire
program.

Jiazzi [20], a component system for Java, addresses issues of sig-
nature ascription and parameterized modules in the context of a tra-
ditional OO language. Jiazzi disallows hiding abstract methods be-
cause of problems analogous to the one shown in figure 12. Jiazzi
also restricts the hiding of a superclass relationship, like EML, but
Jiazzi allows such hiding if the superclass itself is also hidden. EML
and Jiazzi each have challenges for information hiding that have no
analogue in the other system: EML’s unique challenges arise from
its generalization of OO and functional dispatching semantics, and
Jiazzi’s unique challenges arise from cyclic linking.

EML’s modular requirements are adapted from our previous work
on Dubious [22, 23], a multimethod-based OO calculus supporting
modular typechecking. In EML, we have generalized the require-
ments to fit an ML context and have also substantially simplified
both their informal and formal presentations. The notion of mod-
ularity in Dubious is coarser than EML’s static dependency rela-
tion: a Dubious module requires access to more of the program to
soundly perform ITC than does an EML module. Dubious does not
consider patterns, polymorphism, or ML-style modules.

7 Conclusionsand Future Work

We described Extensible ML, an ML-like language that supports
hierarchical, extensible datatypes and functions. Such constructs
allow for the easy addition of both new data variants and new op-
erations to existing abstractions, resolving a long-standing tension
between the functional and object-oriented styles. At the same time,
EMmL retains completely modular typechecking of function imple-
mentations. This contrasts with previous languages based on ex-
tensible datatypes and functions, which require link-time checks to
ensure type safety. We have formalized EML in MINI-EML and
proven its type system sound.

There are several directions for future work. We have built a pro-
totype interpreter for the core of EmML, and we plan to pursue case
studies to gauge the utility of our modular type system in prac-
tice. Currently EmL does not allow aliasing of classes or extensible
functions. A general approach to handling aliasing would allow
classes and extensible functions to be less second-class. Finally,
more work is needed to integrate EML with ML-style modules, par-
ticularly functors. We will pursue the ideas presented in section 5,
formalize this extension in MINI-EML, and implement it in our in-
terpreter.
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