
Name:

CSE 505, Fall 2003, Midquarter Examination
4 November 2003

Please do not turn the page until everyone is ready.

Rules:

• The exam is open-book, open-note, closed electronics.

• Please stop promptly at 11:50.

• You can rip apart the pages, but please write your name on each page.

• You can turn in other pieces of paper.

• There are six questions (all with subparts), worth equal amounts. The subparts are not necessarily
worth equal amounts.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are roughly in the order we covered the material, not necessarily order of difficulty. Skip
around.

• If you have questions, ask.

• Relax. You are here to learn, not beat the mean.

1

Name:

1. Consider this syntax for IMP expressions, which has (integer) division as the only arithmetic operator :

e ::= c | x | e/e

(a) Give a large-step operational semantics of the form H ; e ⇓ c for these expressions. Make sure
that if evaluation of e under H would involve dividing by 0, then there is no c for which you can
derive H ; e ⇓ c.
(Hint: You need 3 inference rules.)
(Note: You may assume H(x) is defined as in class.)

(b) Now suppose we add an explicit error result. Add inference rules to your previous answer so that
H ; e ⇓ v where v ::= c | error. Make sure that if evaluation of e under H would involve dividing
by 0, then H ; e ⇓ error.
(Hint: You need 3 more inference rules, so 6 total.)

(c) Does adding the rule
H ; 0/e ⇓ 0

change the semantics you defined for (a) and (b)? Explain.

2

Name:

2. Here is our unchanged syntax and semantics for IMP statements:

s ::= skip | x := e | s; s | if e s s | while e s

assign
H ; e ⇓ c

H ; x := e → H,x 7→ c ; skip

seq1

H ; skip; s → H ; s

seq2

H ; s1 → H ′ ; s′
1

H ; s1; s2 → H ′ ; s′
1; s2

if1
H ; e ⇓ c c>0

H ; if e s1 s2 → H ; s1

if2
H ; e ⇓ c c≤0

H ; if e s1 s2 → H ; s2

while

H ; while e s → H ; if e (s;while e s) skip

(a) Define a judgment of the form mysize(s) = n. Informally, n should be: (the number of skip
statements in s) plus (two times the number of assignment statements in s). For example, you
should be able to derive mysize(skip; x := 0; y := 1) = 5.
(Hint: You need 5 inference rules.)

(b) Prove the following: If s has no while-statements or if-statements and H ; s → H ′ ; s′ and
mysize(s) = n and mysize(s′) = n′, then n′ < n.
Note: This theorem is true with if-statements (but not while-statements), but you do not have to
show this.

(c) Using part (b), argue informally (no proof required) that while-free programs terminate.

3

Name:

3. Describe what each of the following O’Caml programs would print:

(a) let f x y = x y in
let z = f print_string "hi" in
f print_string "hi"

(b) let f x = (fun y -> print_string x) in
let g = f "hi" in
let x = "mom" in
g "pizza"

(c) let rec f n x =
if n>0
then (let _ = print_string x in f (n-1) x)
else ()

in
f 3 "hi"

(d) let rec f n x =
if n>0
then (let _ = print_string x in f (n-1) x)
else ()

in
f 3

(e) let rec f x = f x in
print_string (f "hi")

4

Name:

4. Consider a λ-calculus with pairs built-in. That is, (v1, v2) is a value if v1 and v2 are values, (v1, v2).1 →
v1 and (v1, v2).2 → v2.

(a) Give an encoding of triples that uses pairs. You should define four terms: a three-argument
function (using currying) to build a triple, and functions for returning the first, second, and third
part of a triple. (By encoding, we mean you may not extend the syntax of the language.)

(b) In the simply-typed λ-calcus with pairs (and types of the form τ1 ∗ τ2), give two different types
that your function for forming a triple could have. (I.e., if e is your term for building a triple,
give two τ such that · ` e : τ .)

5

Name:

5. Under what assumptions do the following terms type-check in the simply-typed λ-calculus? That is,
for the given e, describe all Γ and τ such that Γ ` e : τ .

(a) e = x y

(b) e = λx. (f (f x))

(c) e = λx. (λy. x)

(d) e = λx. (x (λy. x))

6

Name:

6. Recall how we extend the simply-typed λ-calculus with fix :

e → e′

fix e → fix e′ fix λx. e → e[(fix λx. e)/x]
Γ ` e : τ → τ

Γ ` fix e : τ

Also we recall that this extension is type-safe.

(a) If we add the rule

Γ ` fix e : τ

is our language still type-safe? If not, give a program that gets stuck. If so, argue the case of the
Preservation Lemma proof for a typing derivation ending with this rule.

(b) If we add the rule

Γ ` fix λx. x : τ

is our language still type-safe? If not, give a program that gets stuck. If so, argue the case of the
Preservation Lemma proof for a typing derivation ending with this rule.

Hint: The Preservation Lemma is: If · ` e : τ and e → e′, then · ` e′ : τ . We prove it by induction on
the derivation of · ` e : τ .

7

