CSE 505, Fall 2003, Midquarter Examination 4 November 2003

Please do not turn the page until everyone is ready.

Rules:

- The exam is open-book, open-note, closed electronics.
- Please stop promptly at 11:50.
- You can rip apart the pages, but please write your name on each page.
- You can turn in other pieces of paper.
- There are six questions (all with subparts), worth equal amounts. The subparts are not necessarily worth equal amounts.

Advice:

- Read questions carefully. Understand a question before you start writing.
- Write down thoughts and intermediate steps so you can get partial credit.
- The questions are roughly in the order we covered the material, not necessarily order of difficulty. Skip around.
- If you have questions, ask.
- Relax. You are here to learn, not beat the mean.

Marsa.			
mame:_			

1. Consider this syntax for IMP expressions, which has (integer) division as the only arithmetic operator:

$$e ::= c \mid x \mid e/e$$

(a) Give a large-step operational semantics of the form H; $e \Downarrow c$ for these expressions. Make sure that if evaluation of e under H would involve dividing by 0, then there is no e for which you can derive H; $e \Downarrow e$.

(Hint: You need 3 inference rules.)

(Note: You may assume H(x) is defined as in class.)

(b) Now suppose we add an explicit **error** result. Add inference rules to your previous answer so that $H : e \Downarrow v$ where $v := c \mid \mathbf{error}$. Make sure that if evaluation of e under H would involve dividing by 0, then $H : e \Downarrow \mathbf{error}$.

(Hint: You need 3 more inference rules, so 6 total.)

(c) Does adding the rule $\frac{1}{H; 0/e \downarrow 0}$ change the semantics you defined for (a) and (b)? Explain.

Name:

2. Here is our *unchanged* syntax and semantics for IMP statements:

$$s ::= \mathsf{skip} \mid x := e \mid s; s \mid \mathsf{if} \ e \ s \ s \mid \mathsf{while} \ e \ s$$

$$\frac{H \ ; \ e \ \ \downarrow \ c \qquad c > 0}{H \ ; \ \text{if} \ e \ s_1 \ s_2 \rightarrow H \ ; s_1} \qquad \frac{H \ ; \ e \ \ \downarrow \ c \qquad c \leq 0}{H \ ; \ \text{if} \ e \ s_1 \ s_2 \rightarrow H \ ; s_2} \qquad \frac{\text{WHILE}}{H \ ; \ \text{while} \ e \ s \rightarrow H \ ; \ \text{if} \ e \ (s; \ \text{while} \ e \ s) \ \text{skip}}$$

- (a) Define a judgment of the form mysize(s) = n. Informally, n should be: (the number of skip statements in s) plus ($two\ times$ the number of assignment statements in s). For example, you should be able to derive mysize(skip; x := 0; y := 1) = 5. (Hint: You need 5 inference rules.)
- (b) Prove the following: If s has no while-statements or if-statements and H; $s \to H'$; s' and $\operatorname{mysize}(s) = n$ and $\operatorname{mysize}(s') = n'$, then n' < n. Note: This theorem is true with if-statements (but not while-statements), but you do not have to show this.
- (c) Using part (b), argue informally (no proof required) that while-free programs terminate.

Name:	
Name:	

3. Describe what each of the following O'Caml programs would print:

```
(a) let f x y = x y in
   let z = f print_string "hi" in
   f print_string "hi"
(b) let f x = (fun y -> print_string x) in
   let g = f "hi" in
   let x = "mom" in
   g "pizza"
(c) let rec f n x =
     if n>0
     then (let \_ = print_string x in f (n-1) x)
     else ()
   in
   f 3 "hi"
(d) let rec f n x =
     if n>0
     then (let \_ = print_string x in f (n-1) x)
     else ()
   in
   f 3
(e) let rec f x = f x in
   print_string (f "hi")
```

- 4. Consider a λ -calculus with pairs built-in. That is, (v_1, v_2) is a value if v_1 and v_2 are values, $(v_1, v_2).1 \rightarrow v_1$ and $(v_1, v_2).2 \rightarrow v_2$.
 - (a) Give an encoding of triples that uses pairs. You should define four terms: a three-argument function (using currying) to build a triple, and functions for returning the first, second, and third part of a triple. (By *encoding*, we mean you may *not* extend the syntax of the language.)
 - (b) In the simply-typed λ -calcus with pairs (and types of the form $\tau_1 * \tau_2$), give two different types that your function for forming a triple could have. (I.e., if e is your term for building a triple, give two τ such that $\cdot \vdash e : \tau$.)

Name:

- 5. Under what assumptions do the following terms type-check in the simply-typed λ -calculus? That is, for the given e, describe all Γ and τ such that $\Gamma \vdash e : \tau$.
 - (a) e = x y
 - (b) $e = \lambda x$. (f(f x))
 - (c) $e = \lambda x$. $(\lambda y. x)$
 - (d) $e = \lambda x. (x (\lambda y. x))$

6. Recall how we extend the simply-typed λ -calculus with fix:

$$\frac{e \to e'}{\textit{fix } e \to \textit{fix } e'} \qquad \frac{\Gamma \vdash e : \tau \to \tau}{\textit{fix } \lambda x. \ e \to e[(\textit{fix } \lambda x. \ e)/x]} \qquad \frac{\Gamma \vdash e : \tau \to \tau}{\Gamma \vdash \textit{fix } e : \tau}$$

Also we recall that this extension is type-safe.

(a) If we add the rule

$$\overline{\Gamma \vdash \mathit{fix}\ e : \tau}$$

is our language still type-safe? If not, give a program that gets stuck. If so, argue the case of the Preservation Lemma proof for a typing derivation ending with this rule.

(b) If we add the rule

$$\frac{}{\Gamma \vdash \mathit{fix} \ \lambda x. \ x : \tau}$$

is our language still type-safe? If not, give a program that gets stuck. If so, argue the case of the Preservation Lemma proof for a typing derivation ending with this rule.

Hint: The Preservation Lemma is: If $\cdot \vdash e : \tau$ and $e \to e'$, then $\cdot \vdash e' : \tau$. We prove it by induction on the derivation of $\cdot \vdash e : \tau$.