Name:

CSE 505, Fall 2003, Final Examination
12 December 2003

Please do not turn the page until everyone is ready.

Rules:
e The exam is open-book, open-note, closed electronics.

e Please stop promptly at 12:20.

You can rip apart the pages, but please write your name on each page.

e You can turn in other pieces of paper.

There are six questions (all with subparts), worth equal amounts. The subparts are not necessarily
worth equal amounts.

Advice:
e Read questions carefully. Understand a question before you start writing.
e Write down thoughts and intermediate steps so you can get partial credit.

e The questions are roughly in the order we covered the material, not necessarily order of difficulty. Skip
around.

If you have questions, ask.

Relax. You are here to learn, not beat the mean.

Name:

1. Assume a typed lambda-calculus with recursive types, product types, and sum types. (You may choose
the formulation of recursive types with subtyping or explicit roll/unroll. Just state your choice.)

(a) Give a type describing binary trees of integers. A binary tree of integers is either a leaf (which
holds one integer) or a node (which holds one integer in addition to two binary (sub)trees of
integers).

(b) Write a one-argument function that takes an integer and produces a leaf holding that integer.

(¢) Give a full typing derivation showing that your answer to the previous part is a function from
integers to binary trees of integers.

Name:

. Assume a typed lambda-calculus with records, references, and subtyping. For each of the following,
describe exactly the conditions under which the subtyping claim holds.

Example question: {ly:71, lo:me} < {l1:73, lo:74}
Example answer: “when 7 < 73 and 7 < 74"

Your answer should be “fully reduced” in the sense that if you say 7 < 7/, then 7 or 7/ or both should
be 7; for some number i where 7; appears in the question.

(a) ({11:7—17l2:7-2}) — int < ({l11T3712:’7'4}> — int
(b) {lll(Tl ref)} § {1127'2}
€ (m—m)—=(m—-mn) < (57— (07—)

(d) (11— 1) ref < (13— 74) ref

Name:

3. Consider the following O’Caml code.

let catch_alll t1 t2 = try t1 () with x -> t2 (O

let catch_all2 t1 t2 = try t1 () with x -> t2

(a) Under what conditions, if any, does using catch_alll raise an exception?
(b) Under what conditions, if any, does using catch_all2 raise an exception?

(¢) What type does O’Caml give catch_alll? (You can give your answer in O’Caml notation or
System-F notation.)

(d) What type does O’Caml give catch_all2? (You can give your answer in O’Caml notation or
System-F notation.)

Name:

. Consider these definitions in a class-based OO language:

class Thunk {
abstract int apply();

}

class A {
private int y;
int g() { <<a hard-to-compute function using self.y>> }
unit set_y(int i) { self.y := i }

}

class B {
int f1(int x, bool b) { if b then x else 0 }
int £2(Thunk x, bool b) { if b then x.apply() else 0 }

unit £(A a, bool b) {

}
}

(a)

// line 0O
print_int(self.f1(a.g(), b)); // line 1

// line 2 (irrelevant until part (e))
print_int(self.f1(a.g(), b)); // line 3 (identical to line 1)

Replace lines 1 and 3 with code that uses £2 and not f1, but still prints the same number.
You should declare a subclass of Thunk (outside of class B) and use this class (including on
line 0). Your subclass should define a constructor that takes argument(s) and initializes fields
appropriately. (Hint: Pass a to the constructor.)

Compared to the original version, when is the change you made in part (a) faster and when is it
slower?

Change your subclass of Thunk so that the first time apply is called it stores the result it returns
in private state. When called again, apply should return the stored result. Lines 1 and 3 should
be the same as in part (a).

Compared to the change in part (a), does the change in part (c¢) make line 1 faster or slower?
Does it make line 3 faster or slower?

Write a line 2 that makes the change in part (c) incorrect in the sense that £ might print different
output than in part (a).

The next page s blank.

Name:

This page intentionally blank.

Name:

. Consider these definitions in a class-based OO language:

class C1 { class Main {
int g() { return 0; } int m1(Cl x) { return x.f() }
int £ { return g(O; } int m2(C2 x) { return x.f() }
} int m3(D1 x) { return x.f() }
class C2 extends C1 { int m4(D2 x) { return x.f() }
int g0 { return 1; } }
}
class D1 {
private Cl1 x = new C1();
int g() { return 0; }

int £() { return x.fQ; }
}
class D2 extends D1 {

int g() { return 1; }
}

Assume this is not the entire program, but the rest of the program does not declare subclasses of the
classes above.

Explain your answers:

a) True or false: Changing the body of m1 to return produces an equivalent m1.

b

—~ o~

True or false: Changing the body of m2 to return produces an equivalent m2.

produces an equivalent m3.

o

True or false: Changing the body of m3 to return

L O r O

—~ o~

produces an equivalent m4.

)
)
d) True or false: Changing the body of m4 to return
e)

—

How do your answers change if the rest of the program might declare subclasses of the classes
above (excluding Main)?

Name:

6. Consider a class-based OO language with this ill-advised addition: We can declare new classes with
“class C restricts D by m.” If D is a class with a method named m, then this declaration creates a
class C that inherits the fields and methods of D except C has no method m.

(a)

(b)

Given class C restricts D by m, show that C should not be a subtype of D. Give an example
expression that would type-check if C were a subtype of D but that would lead to a failed method-
lookup, regardless of what members D has (other than m).

Given class C restricts D by m, show that C may be a bad type, even without subtyping.
Give an example class D and an expression e that would type-check such that evaluation of e
would lead to a failed method-lookup. (Hint: D (and therefore C) can have methods other than
m.)

If we have interface I restricts J by m instead of class C restricts D by m, is it wrong
to allow I<J (or does the problem from part (a) no longer apply)? Explain.

If we have interface I restricts J by m instead of class C restricts D by m, can I be a
bad type even without subtyping (or does the problem from part (b) no longer apply)? Explain.

