CSE 505, Fall 2003, Midquarter Examination 4 November 2003

Please do not turn the page until everyone is ready.

Rules:

- The exam is open-book, open-note, closed electronics.
- Please stop promptly at 11:50.
- You can rip apart the pages, but please write your name on each page.
- You can turn in other pieces of paper.
- There are six questions (all with subparts), worth equal amounts. The subparts are not necessarily worth equal amounts.

Advice:

- Read questions carefully. Understand a question before you start writing.
- Write down thoughts and intermediate steps so you can get partial credit.
- The questions are roughly in the order we covered the material, not necessarily order of difficulty. Skip around.
- If you have questions, ask.
- Relax. You are here to learn, not beat the mean.

1. Consider this syntax for IMP expressions, which has (integer) division as the only arithmetic operator:

$$e ::= c \mid x \mid e/e$$

(a) Give a large-step operational semantics of the form H; $e \Downarrow c$ for these expressions. Make sure that if evaluation of e under H would involve dividing by 0, then there is no e for which you can derive H; $e \Downarrow e$.

(Hint: You need 3 inference rules.)

(Note: You may assume H(x) is defined as in class.)

(b) Now suppose we add an explicit **error** result. Add inference rules to your previous answer so that $H : e \Downarrow v$ where $v := c \mid \mathbf{error}$. Make sure that if evaluation of e under H would involve dividing by 0, then $H : e \Downarrow \mathbf{error}$.

(Hint: You need 3 more inference rules, so 6 total.)

(c) Does adding the rule $\frac{1}{H; 0/e \downarrow 0}$ change the semantics you defined for (a) and (b)? Explain.

Solution:

(a)

$$\frac{H ; e_1 \Downarrow c_1 \qquad H ; e_2 \Downarrow c_2 \qquad c_2 \neq 0}{H ; x \Downarrow H(x)}$$

(The conclusions of the last rule uses the "math" /. I didn't count off for omitting $c_2 \neq 0$ because you could claim the math / simply does not apply if c_2 is 0.)

(b) We add:

$$\frac{H \ ; \ e_1 \Downarrow \mathbf{error}}{H \ ; \ e_1/e_2 \Downarrow \mathbf{error}} \qquad \qquad \frac{H \ ; \ e_2 \Downarrow \mathbf{error}}{H \ ; \ e_1/e_2 \Downarrow \mathbf{error}} \qquad \qquad \frac{H \ ; \ e_2 \Downarrow 0}{H \ ; \ e_1/e_2 \Downarrow \mathbf{error}}$$

(c) Yes, this rule would let us derive results like H; $0/0 \downarrow 0$, which the solutions to parts (a) and (b) do not allow.

2. Here is our unchanged syntax and semantics for IMP statements:

$$s ::= \mathsf{skip} \mid x := e \mid s; s \mid \mathsf{if} \ e \ s \ s \mid \mathsf{while} \ e \ s$$

$$\frac{H \; ; \; e \; \Downarrow \; c \qquad c > 0}{H \; ; \; \text{if} \; e \; s_1 \; s_2 \rightarrow H \; ; \; s_1} \qquad \frac{H \; ; \; e \; \Downarrow \; c \qquad c \leq 0}{H \; ; \; \text{if} \; e \; s_1 \; s_2 \rightarrow H \; ; \; s_2} \qquad \frac{\text{WHILE}}{H \; ; \; \text{while} \; e \; s \rightarrow H \; ; \; \text{if} \; e \; (s; \; \text{while} \; e \; s) \; \text{skip}}$$

- (a) Define a judgment of the form mysize(s) = n. Informally, n should be: (the number of skip statements in s) plus ($two\ times$ the number of assignment statements in s). For example, you should be able to derive mysize(skip; x := 0; y := 1) = 5. (Hint: You need 5 inference rules.)
- (b) Prove the following: If s has no while-statements or if-statements and H; $s \to H'$; s' and $\operatorname{mysize}(s) = n$ and $\operatorname{mysize}(s') = n'$, then n' < n. Note: This theorem is true with if-statements (but not while-statements), but you do not have to show this.
- (c) Using part (b), argue *informally* (no proof required) that while-free programs terminate.

Solution:

(a)

$$\begin{split} & \frac{mysize(\mathsf{skip}) = 1}{mysize(s_1) = n_1} & \frac{mysize(s_1) = n_1 \quad mysize(s_2) = n_2}{mysize(s_1) = n_1 \quad mysize(s_2) = n_2} \\ & \frac{mysize(s_1) = n_1 \quad mysize(s_2) = n_2}{mysize(\mathsf{if}\ e\ s_1\ s_2) = n_1 + n_2} & \frac{mysize(s) = n}{mysize(\mathsf{while}\ e\ s) = n} \end{split}$$

- (b) The proof is by induction on the derivation of H; $s \to H'$; s', proceeding by cases on the bottom-most rule:
 - If s is some x := e then n is 2 and n' is 1.
 - If s is some $s_1; s_2$ and s_1 is not skip, then we have a shorter derivation of $H : s_1 \to H' : s'_1$. Furthermore, $\text{mysize}(s_1; s_2) = n_1 + n_2$ where $\text{mysize}(s_1) = n_1$ and $\text{mysize}(s_2) = n_2$. So by induction $\text{mysize}(s'_1) = n'_1$ where $n'_1 < n_1$. So we can derive $\text{mysize}(s'_1; s_2) = n'_1 + n_2$ and $n'_1 + n_2 < n_1 + n_2$.

Note: We're implicitly using a lemma that mysize(s) = n implies n > 0, but I didn't take off if you failed to say that explicitly.

- If s has the form skip; s_2 , then s' is s_2 and inverting mysize(s) = n ensures mysize(s₂) = n 1. Clearly n - 1 < n.
- If s if an if-statement or while-loop, the lemma holds vacuously.
- (c) If s is while-free and mysize(s) = n, then the previous part proved the size of s decreases on every step. So in at most n steps its size must be 1, which means it has become skip.

Name:

3. Describe what each of the following O'Caml programs would print:

```
(a) let f x y = x y in
   let z = f print_string "hi" in
   f print_string "hi"
(b) let f x = (fun y -> print_string x) in
   let g = f "hi" in
   let x = "mom" in
   g "pizza"
(c) let rec f n x =
     if n>0
     then (let \_ = print_string x in f (n-1) x)
     else ()
   in
   f 3 "hi"
(d) let rec f n x =
     if n>0
     then (let _ = print_string x in f (n-1) x)
     else ()
   in
   f 3
(e) let rec f x = f x in
   print_string (f "hi")
```

Solution:

- (a) "hi" "hi"
- (b) "hi"
- (c) "hi" "hi" "hi"
- (d) prints nothing (evaluates to a function that prints when called)
- (e) prints nothing (goes into an infinite loop)

Name:

- 4. Consider a λ -calculus with pairs built-in. That is, (v_1, v_2) is a value if v_1 and v_2 are values, $(v_1, v_2).1 \rightarrow v_1$ and $(v_1, v_2).2 \rightarrow v_2$.
 - (a) Give an encoding of triples that uses pairs. You should define four terms: a three-argument function (using currying) to build a triple, and functions for returning the first, second, and third part of a triple. (By *encoding*, we mean you may *not* extend the syntax of the language.)
 - (b) In the simply-typed λ -calcus with pairs (and types of the form $\tau_1 * \tau_2$), give two different types that your function for forming a triple could have. (I.e., if e is your term for building a triple, give two τ such that $\cdot \vdash e : \tau$.)

Solution:

```
(a) "make-triple" = \lambda x. \lambda y. \lambda z. ((x,y),z) "first" = \lambda x. x.1.1 "second" = \lambda x. x.1.2 "third" = \lambda x. x.2
```

(b) int->int->int->((int*int)*int)
 int->int->(int*int)->((int*int)*(int*int))

. . .

- 5. Under what assumptions do the following terms type-check in the simply-typed λ -calculus? That is, for the given e, describe all Γ and τ such that $\Gamma \vdash e : \tau$.
 - (a) e = x y
 - (b) $e = \lambda x$. (f(f x))
 - (c) $e = \lambda x$. $(\lambda y. x)$
 - (d) $e = \lambda x. (x (\lambda y. x))$

Solution:

- (a) Any Γ and τ where Γ maps x to a type of the form $\tau_1 \to \tau$ and y to a type of the form τ_1 .
- (b) Any Γ and τ where Γ maps f to a type of the form $\tau_1 \to \tau_1$ and $\tau = \tau_1 \to \tau_1$.
- (c) Any Γ and τ where τ has the form $\tau_1 \to \tau_2 \to \tau_1$.
- (d) There is no Γ and τ for which this program type-checks.

6. Recall how we extend the simply-typed λ -calculus with fix:

$$\frac{e \to e'}{\text{fix } e \to \text{fix } e'} \qquad \frac{\Gamma \vdash e : \tau \to \tau}{\text{fix } \lambda x. \ e \to e[(\text{fix } \lambda x. \ e)/x]} \qquad \frac{\Gamma \vdash e : \tau \to \tau}{\Gamma \vdash \text{fix } e : \tau}$$

Also we recall that this extension is type-safe.

(a) If we add the rule

$$\overline{\Gamma \vdash \mathit{fix}\ e : \tau}$$

is our language still type-safe? If not, give a program that gets stuck. If so, argue the case of the Preservation Lemma proof for a typing derivation ending with this rule.

(b) If we add the rule

$$\overline{\Gamma \vdash \mathit{fix} \ \lambda x. \ x : \tau}$$

is our language still type-safe? If not, give a program that gets stuck. If so, argue the case of the Preservation Lemma proof for a typing derivation ending with this rule.

Hint: The Preservation Lemma is: If $\cdot \vdash e : \tau$ and $e \to e'$, then $\cdot \vdash e' : \tau$. We prove it by induction on the derivation of $\cdot \vdash e : \tau$.

Solution:

- (a) The extension is not safe because it accepts any term of the form fix e. So fix (3 4) would get stuck.
- (b) The language is safe. For Preservation, if the typing derivation ends with $\frac{1}{\cdot \vdash fix \ \lambda x. \ x : \tau}$, we need to show $\cdot \vdash e' : \tau$ if $fix \ \lambda x. \ x \to e'$. But $fix \ \lambda x. \ x \to fix \ \lambda x. \ x$ so the assumed typing derivation is exactly what we need.