CSE 505: Concepts of Programming Languages

Dan Grossman
Fall 2005
Lecture 9— More ST\(\lambda\)C Extensions; Notes on Termination
Outline

- Continue extending ST\(\lambda\)C – data structures, recursion
- Discussion of “anonymous” types
- Consider termination informally
- Next time: Curry-Howard Isomorphism, Evaluation Contexts, Abstract Machines
Review

\[e ::= \lambda x. \ e \mid x \mid e \ e \mid c \quad v ::= \lambda x. \ e \mid c \]

\[\tau ::= \text{int} \mid \tau \rightarrow \tau \quad \Gamma ::= \cdot \mid \Gamma, x : \tau \]

\[\frac{\quad}{(\lambda x. \ e) \ v \rightarrow e[v/x]} \quad \frac{e_1 \rightarrow e'_1}{e_1 \ e_2 \rightarrow e'_1 \ e_2} \quad \frac{e_2 \rightarrow e'_2}{v \ e_2 \rightarrow v \ e'_2} \]

\[e[e'/x] \] : capture-avoiding substitution of \(e' \) for free \(x \) in \(e \)

\[\frac{\quad}{\Gamma \vdash c : \text{int}} \quad \frac{\quad}{\Gamma \vdash x : \Gamma(x)} \quad \frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda x. \ e : \tau_1 \rightarrow \tau_2} \]

\[\frac{\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 \ e_2 : \tau_1} \]

Preservation: If \(\cdot \vdash e : \tau \) and \(e \rightarrow e' \), then \(\cdot \vdash e' : \tau \).

Progress: If \(\cdot \vdash e : \tau \), then \(e \) is a value or \(\exists e' \) such that \(e \rightarrow e' \).
Pairs (CBV, left-right)

\[e ::= \ldots | (e, e) | e.1 | e.2 \]
\[v ::= \ldots | (v, v) \]
\[\tau ::= \ldots | \tau \ast \tau \]

\[
\begin{align*}
 e_1 &\rightarrow e'_1 \\
 (e_1, e_2) &\rightarrow (e'_1, e_2)
\end{align*}
\]
\[
\begin{align*}
 e_2 &\rightarrow e'_2 \\
 (v_1, e_2) &\rightarrow (v_1, e'_2)
\end{align*}
\]

\[
\begin{align*}
 e &\rightarrow e' \\
 e.1 &\rightarrow e'.1
\end{align*}
\]
\[
\begin{align*}
 e &\rightarrow e' \\
 e.2 &\rightarrow e'.2
\end{align*}
\]

\[
\begin{align*}
 (v_1, v_2).1 &\rightarrow v_1 \\
 (v_1, v_2).2 &\rightarrow v_2
\end{align*}
\]

Small-step can be a pain (more concise notation Thursday)
Pairs continued

\[
\begin{align*}
\Gamma \vdash e_1 : \tau_1 & \quad \Gamma \vdash e_2 : \tau_2 \\
\Gamma \vdash (e_1, e_2) : \tau_1 \ast \tau_2
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash e : \tau_1 \ast \tau_2 \\
\Gamma \vdash e.1 : \tau_1
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash e : \tau_1 \ast \tau_2 \\
\Gamma \vdash e.2 : \tau_2
\end{align*}
\]

Canonical Forms: If \(\cdot \vdash v : \tau_1 \ast \tau_2 \), then \(v \) has the form \((v_1, v_2)\).

Progress: New cases using C.F. are \(v.1 \) and \(v.2 \).

Preservation: For primitive reductions, inversion gives the result directly.
Records

Records seem like pairs with *named fields*

\[e ::= \ldots \mid \{l_1 = e_1; \ldots; l_n = e_n\} \mid e.l \]

\[\tau ::= \ldots \mid \{l_1 : \tau_1; \ldots; l_n : \tau_n\} \]

\[v ::= \ldots \mid \{l_1 = v_1; \ldots; l_n = v_n\} \]

Fields do *not* \(\alpha\)-convert.

Names might let us reorder fields, e.g.,
\[\cdot \vdash \{l_1 = 42; l_2 = \text{true}\} : \{l_2 : \text{bool}; l_1 : \text{int}\}. \]

Nothing wrong with this, but many languages disallow it. (Why? Run-time efficiency and/or type inference)

(Caml has only *named* record types with *disjoint* fields.)

More on this when we study *subtyping*
Sums

What about ML-style datatypes:

\[
\text{type } t = A | B \text{ of } \text{int} | C \text{ of } \text{int}^*t
\]

1. Tagged variants (i.e., discriminated unions)
2. Recursive types
3. Type constructors (e.g., \text{type } 'a \text{ mylist } = \ldots)
4. Names the type

Today we’ll model just (1) with (anonymous) sum types:

\[
e :\!::= \ldots \mid \text{inl}(e) \mid \text{inr}(e) \mid \text{case } e \ x.e \mid x.e
\]

\[
v :\!::= \ldots \mid \text{inl}(v) \mid \text{inr}(v)
\]

\[
\tau :\!::= \ldots \mid \tau_1 + \tau_2
\]
Sum semantics

\[
\text{case } \text{inl}(v) \ x.e_1 | x.e_2 \rightarrow e_1[v/x]
\]

\[
\text{case } \text{inr}(v) \ x.e_1 | x.e_2 \rightarrow e_2[v/x]
\]

\[
e \rightarrow e'
\]

\[
\frac{e \rightarrow e'}{\text{inl}(e) \rightarrow \text{inl}(e')}
\]

\[
\frac{e \rightarrow e'}{\text{inr}(e) \rightarrow \text{inr}(e')}
\]

\[
e \rightarrow e'
\]

\[
\frac{e \rightarrow e'}{\text{case } e \ x.e_1 | x.e_2 \rightarrow \text{case } e' \ x.e_1 | x.e_2}
\]

case has binding occurrences, just like pattern-matching.
Sum Type-checking

Inference version (not trivial to infer; can require annotations)

\[\Gamma \vdash e : \tau_1 \]
\[\Gamma \vdash \text{inl}(e) : \tau_1 + \tau_2 \]
\[\Gamma \vdash e : \tau_2 \]
\[\Gamma \vdash \text{inr}(e) : \tau_1 + \tau_2 \]

\[\Gamma \vdash e : \tau_1 + \tau_2 \]
\[\Gamma, x : \tau_1 \vdash e_1 : \tau \]
\[\Gamma, x : \tau_2 \vdash e_2 : \tau \]
\[\Gamma \vdash \text{case } e \ x. e_1 | x. e_2 : \tau \]

C.F.: If \(\Gamma \vdash v : \tau_1 + \tau_2 \), then either \(v \) has the form \(\text{inl}(v_1) \) and
\(\Gamma \vdash v_1 : \tau_1 \) or . . .

The rest is induction and substitution.

Can encode booleans with sums. E.g., \texttt{bool} = \texttt{int} + \texttt{int},
\(\text{true} = \text{inl}(0) \), \(\text{false} = \text{inr}(0) \).
Base Types, in general

What about floats, strings, enums, . . . ? Could add them all or do something more general . . .

Parameterize our language/semantics by a collection of base types (b_1, \ldots, b_n) and primitives $(c_1 : \tau_1, \ldots, c_n : \tau_n)$.

Examples: concat : string→string→string
toInt : float→int
“hello” : string

For each primitive, assume if applied to values of the right types it produces a value of the right type.

Together the types and assumed steps tell us how to type-check and evaluate $c_i \, v_1 \ldots \, v_n$ where c_i is a primitive.

We can prove soundness once and for all given the assumptions.
Recursion

We won’t prove it, but every extension so far preserves termination. A Turing-complete language needs some sort of loop. What we add won’t be encodable in $\text{ST}\lambda\text{C}$.

E.g., let rec $f\ x = e$

Do typed recursive functions need to be bound to variables or can they be anonymous?

In Caml, you need variables, but it’s unnecessary:

\[
\begin{align*}
e ::= \ldots \mid \text{fix } e \\
\text{fix } e \rightarrow \text{fix } e' \\
\text{fix } \lambda x. e \rightarrow e[\text{fix } \lambda x. e/x]
\end{align*}
\]
Using **fix**

It works just like `let rec`, e.g.,

\[
\text{fix } \lambda f. \lambda n. \text{ if } n < 1 \text{ then } 1 \text{ else } n \times (f(n - 1))
\]

Note: You can use it for mutual recursion too.
Pseudo-math digression

Why is it called fix? In math, a fixed-point of a function \(g \) is an \(x \) such that \(g(x) = x \).

Let \(g \) be \(\lambda f. \lambda n. \text{if } n < 1 \text{ then } 1 \text{ else } n \ast (f(n - 1)). \)

If \(g \) is applied to a function that computes factorial for arguments \(\leq m \), then \(g \) returns a function that computes factorial for arguments \(\leq m + 1 \).

Now \(g \) has type \((\text{int} \to \text{int}) \to (\text{int} \to \text{int})\). The fix-point of \(g \) is the function that computes factorial for all natural numbers.

And \(\text{fix } g \) is equivalent to that function. That is, \(\text{fix } g \) is the fix-point of \(g \).
Typing fix

\[\Gamma \vdash e : \tau \rightarrow \tau \]
\[\Gamma \vdash \text{fix } e : \tau \]

Math explanation: If \(e \) is a function from \(\tau \) to \(\tau \), then \(\text{fix } e \), the fixed-point of \(e \), is some \(\tau \) with the fixed-point property. So it’s something with type \(\tau \).

Operational explanation: \(\text{fix } \lambda x. \ e' \) becomes \(e'[\text{fix } \lambda x. \ e'/x] \). The substitution means \(x \) and \(\text{fix } \lambda x. \ e' \) better have the same type. And the result means \(e' \) and \(\text{fix } \lambda x. \ e' \) better have the same type.

Note: Proving soundness is straightforward!
General approach

We added lets, booleans, pairs, records, sums, and fix. Let was syntactic sugar. Fix made us Turing-complete by “baking in” self-application. The others added types.

Whenever we add a new form of type τ there are:

- Introduction forms (ways to make values of type τ)
- Elimination forms (ways to use values of type τ)

What are these forms for functions? Pairs? Sums?

When you add a new type, think “what are the intro and elim forms”?
Anonymity

We added many forms of types, all unnamed a.k.a. structural.

Many real PLs have (all or mostly) named types:

- Java, C, C++: all record types (or similar) have names (omitting them just means compiler makes up a name)
- Caml sum-types have names.

A never-ending debate:

- Structural types allow more code reuse, which is good.
- Named types allow less code reuse, which is good.
- Structural types allow generic type-based code, which is good.
- Named types allow type-based code to distinguish names, which is good.

The theory is often easier and simpler with structural types.
Termination

Surprising fact: If $\cdot \vdash e : \tau$ in the ST\(\lambda\)C with all our additions except fix, then there exists a v such that $e \rightarrow^* v$.

That is, all programs terminate.

So termination is trivially decidable (the constant “yes” function), so our language is not Turing-complete.

Proof is in the book. It requires cleverness because the size of expressions does not “go down” as programs run.

Non-proof: Recursion in \(\lambda\) calculus requires some sort of self-application. Easy fact: For all Γ, x, and τ, we cannot derive $\Gamma \vdash x \ x : \tau$.