
CSE505, Lecture 5 Supplement, Fall 2005
Dan Grossman

By popular demand, here are proofs for theorems only sketched in the lecture-5 slides. (The equivalence
proof for small-step and large-step expression semantics is complete enough in the slides I think. I wrote
these very quickly, so corrections are welcome.

Theorem: H ; e ∗ 2 ⇓ c if and only if H ; e + e ⇓ c.
Proof: (Does not use induction)

• First assume H ; e ∗ 2 ⇓ c and show H ; e + e ⇓ c. Any derivation of H ; e ∗ 2 ⇓ c must end with the
mult rule, which means there must exist derivations of H ; e ⇓ c′ and H ; 2 ⇓ 2, and c must be 2c′.
That is, there must be a derivation that looks like this:

...
H ; e ⇓ c′ H ; 2 ⇓ 2

H ; e ∗ 2 ⇓ 2c′

So given that there exists a derivation of H ; e ⇓ c′, we can use add to derive:

H ; e ⇓ c′ H ; e ⇓ c′

H ; e + e ⇓ c′+c′

Math provides c′+c′ = 2c′, so the conclusion of this derivation is what we need.

• Now assume H ; e + e ⇓ c and show H ; e ∗ 2 ⇓ c. Any derivation of H ; e + e ⇓ c must end with the
add rule, which means there exists a derivation that looks like this (where c = c1+c2):

...
H ; e ⇓ c1

...
H ; e ⇓ c2

H ; e + e ⇓ c1+c2

In fact, we earlier proved determinacy (there is at most one c such that H ; e ⇓ c), so the derivation
must have this form (where c = c1+c1):

...
H ; e ⇓ c1

...
H ; e ⇓ c1

H ; e + e ⇓ c1+c1

So given that there exists a derivation of H ; e ⇓ c1, we can use mult to derive:

H ; e ⇓ c1
H ; 2 ⇓ 2

H ; e ∗ 2 ⇓ 2c1

Math provides c1+c1 = 2c1, so the conclusion of this derivation is what we need.
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C ::= [·] | C + e | e + C | C ∗ e | e ∗ C

Formal definition of “filling the hole”:

([·])[e] = e
(C + e1)[e] = C[e] + e1

(e1 + C)[e] = e1 + C[e]
(C ∗ e1)[e] = C[e] ∗ e1

(e1 ∗ C)[e] = e1 ∗ C[e]

Theorem: H ; C[e ∗ 2] ⇓ c if and only if H ; C[e + e] ⇓ c.
Proof: By induction on (the height of) the structure of C:

• If the height is 1, then C is [·], so C[e ∗ 2] = e ∗ 2 and C[e + e] = e + e. So the previous theorem is
exactly what we need.

• If the height is greater than 1, then C has one of four forms:

– If C is C ′ + e′ for some C ′ and e′, then C[e ∗ 2] is C ′[e ∗ 2] + e′ and C[e + e] is C ′[e + e] + e′. Since
C ′ is shorter than C, induction ensures that for any constant c′, H ; C ′[e ∗ 2] ⇓ c′ if and only if
H ; C ′[e + e] ⇓ c′.
Assume H ; C ′[e ∗ 2] + e′ ⇓ c and show H ; C ′[e + e] + e′ ⇓ c: Any derivation of H ; C ′[e ∗ 2] + e′ ⇓ c
must end with add, i.e., it looks like this (where c = c′+c′′):

...
H ; C ′[e ∗ 2] ⇓ c′

...
H ; e′ ⇓ c′′

H ; C ′[e ∗ 2] + e′ ⇓ c

As argued above, the existence of a derivation of H ; C ′[e ∗ 2] ⇓ c′ ensures the existence of a
derivation of H ; C ′[e + e] ⇓ c′. So using add and the existence of a derivation of H ; e′ ⇓ c′′, we
can derive:

H ; C ′[e + e] ⇓ c′ H ; e′ ⇓ c′′

H ; C ′[e + 2] + e′ ⇓ c

Now assume H ; C ′[e + e] + e′ ⇓ c and show H ; C ′[e ∗ 2] + e′ ⇓ c: Any derivation of H ; C ′[e + 2] + e′ ⇓ c
must end with add, i.e., it looks like this (where c = c′+c′′):

...
H ; C ′[e + e] ⇓ c′

...
H ; e′ ⇓ c′′

H ; C ′[e + 2] + e′ ⇓ c

As argued above, the existence of a derivation of H ; C ′[e + e] ⇓ c′ ensures the existence of a
derivation of H ; C ′[e ∗ 2] ⇓ c′. So using add and the existence of a derivation of H ; e′ ⇓ c′′, we
can derive:

H ; C ′[e ∗ 2] ⇓ c′ H ; e′ ⇓ c′′

H ; C ′[e ∗ 2] + e′ ⇓ c

– The other 3 cases are similar. (Try them out.)
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Theorem: Informally, the statement-sequence operator is associative. Formally:

(a) For all n, if H ; s1; (s2; s3) →n H ′ ; skip then there exist H ′ and n′ such that H ; (s1; s2); s3 →n′
H ′′ ; skip

and H ′′(ans) = H ′(ans).

(b) If for all n there exist H ′ and s′ such that H ; s1; (s2; s3) →n H ′ ; s′, then for all n there exist H ′′

and s′′ such that H ; (s1; s2); s3 →n H ′′ ; s′′.

Lemma: For all n, if H ; s1; (s2; s3) →n H ′ ; s′, then either (1) s′ has the form s′1; (s2; s3) and
H ; (s1; s2); s3 →n H ′ ; (s′1; s2); s3 or (2) H ; (s1; s2); s3 →n H ′ ; s′.

Lemma implies theorem: It’s stronger because if s′ is skip, then only (2) applies and we have H ′′ = H ′

and n′ = n.
Proof of the lemma: By induction on n. For the base case n = 0, so (1) holds with s′1 = s1. For

the inductive case n > 0, so H ; s1; (s2; s3) →n H ′ ; s′, which means H ; s1; (s2; s3) →n−1 H ′′ ; s′′

and H ′′ ; s′′ → H ′ ; s′ for some H ′′ and s′′. So by induction either (1) s′′ has the form s′′1 ; (s2; s3) and
H ; (s1; s2); s3 →n−1 H ′′ ; (s′′1 ; s2); s3 or (2) H ; (s1; s2); s3 →n−1 H ′′ ; s′′.

If (1), then the derivation of H ′′ ; s′′ → H ′ ; s′ ends with either Seq1 or Seq2. If Seq1, then H ′′ is H ′,
s′′1 is skip and s′ is s2; s3. Furthermore, we can derive:

H ′′ ; skip; s2 → H ′′ ; s2

H ′′ ; (skip; s2); s3 → H ′′ ; s2; s3

So (2) holds. If Seq2, then the derivation of H ′′ ; s′′ → H ′ ; s′ must have the form:

H ′′ ; s′′1 → H ′ ; s′1
H ′′ ; s′′1 ; (s2; s3) → H ′ ; s′1; (s2; s3)

So there must be a derivation of H ′′ ; s′′1 → H ′ ; s′1. So we can derive:

H ′′ ; s′′1 → H ′ ; s′1
H ′′ ; s′′1 ; s2 → H ′ ; s′1; s2

H ′′ ; (s′′1 ; s2); s3 → H ′ ; (s′1; s2); s3

So (1) holds.
If (2), then H ′′ ; s′′ → H ′ ; s′ ensures H ; (s1; s2); s3 → H ′ ; s′, so (2) holds.
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