Where are we

Today is IMP’s last day (hooray!). Done:

- Abstract Syntax
- Operational Semantics (large-step and small-step)
- “Denotational” Semantics
- Semantic properties of (sets of) programs

Today:

- Packet-filter languages and other examples
- Equivalence of programs in a semantics
- Equivalence of different semantics

Next time: Local variables, lambda-calculus
Packet Filters

Almost everything I know about packet filters:

• Some bits come in off the wire
• Some application(s) want the “packet” and some do not (e.g., port number)
• For safety, only the O/S can access the wire.
• For extensibility, only an application can accept/reject a packet.

Conventional solution goes to user-space for every packet and app that wants (any) packets.

Faster solution: Run app-written filters in kernel-space.
What we need

Now the O/S writer is defining the packet-filter language!

Properties we wish of (untrusted) filters:

1. Don’t corrupt kernel data structures
2. Terminate (within a time bound)
3. Run fast (the whole point)

Should we download some C/assembly code? (Get 1 of 3.)

Should we make up a language and “hope” it has these properties?
Language-based approaches

1. Interpret a language.
 + clean operational semantics, + portable, - may be slow (+ filter-specific optimizations), - unusual interface

2. Translate a language into C/assembly.
 + clean denotational semantics, + employ existing optimizers, - upfront cost, - unusual interface

3. Require a conservative subset of C/assembly.
 + normal interface, - too conservative w/o help

IMP has taught us about (1) and (2) — we’ll get to (3)
A General Pattern

Packet filters move the code to the data rather than data to the code.

General reasons: performance, security, other?

Other examples:

- Query languages
- Active networks
Equivalence motivation

- Program equivalence (change program): code optimizer, code maintainer

- Semantics equivalence (change language): interpreter optimizer, language designer (prove properties for equivalent semantics with easier proof)

- Both: Great practice for strengthening inductive hypothesis (you will do this again in grad school)

Warning: Proofs are easy with the right semantics and lemmas

Note: Small-step often has harder proofs but models more interesting things
What is equivalence

Equivalence depends on *what is observable*!

- Partial I/O equivalence (if terminates, same *ans*)
 - *while 1 skip* equivalent to everything
 - not transitive

- Total I/O (same termination behavior, same *ans*)

- Total heap equivalence (at termination, all (almost all) variables have the same value)

- Equivalence plus complexity bounds
 - Is $O(2^n)$ really equivalent to $O(n)$?

- Syntactic equivalence (perhaps with renaming)
 - too strict to be interesting
Program Example: Strength Reduction

Motivation: Strength reduction a common compiler optimization due to architecture issues.

Theorem: $H ; e \times 2 \downarrow c$ if and only if $H ; e + e \downarrow c$.

Proof sketch: Just need “inversion of derivation” and math (hmm, no induction).
Program Example: Nested Strength Reduction

Theorem: If \(e' \) has a subexpression of the form \(e \ast 2 \), then \(H ; e' \downarrow c' \) if and only if \(H ; e'' \downarrow c' \) where \(e'' \) is \(e' \) with \(e \ast 2 \) replaced with \(e + e \).

First some useful metanotation:

\[C ::= [\cdot] \mid C + e \mid e + C \mid C \ast e \mid e \ast C \]

\(C[e] \) is “\(C \) with \(e \) in the hole”.

So: If \((e_1 = C[e \ast 2] \) and \(e_2 = C[e + e] \),
then \((H ; e_1 \downarrow c' \) if and only if \(H ; e_2 \downarrow c' \).

Proof sketch: By induction on structure (“syntax height”) of \(C \).
Small-step program equivalence

Theorem and proof significantly simplified by:

- Determinism
- Termination
- Large-step semantics

IMP statements have only determinism.

Theorem: The statement-sequence operator is associative. That is,

(a) For all n, if $H ; s_1; (s_2; s_3) \xrightarrow{n} H'$; skip then there exist H'' and n' such that $H ; (s_1; s_2); s_3 \xrightarrow{n'} H''$; skip and $H''(ans) = H'(ans)$.

(b) If for all n there exist H' and s' such that $H ; s_1; (s_2; s_3) \xrightarrow{n} H'$; s', then for all n there exist H'' and s'' such that $H ; (s_1; s_2); s_3 \xrightarrow{n} H'' ; s''$.
Lemma: For all n, if $H ; s_1; (s_2; s_3) \rightarrow^n H' ; s'$, then either (1) s' has the form $s'_1; (s_2; s_3)$ and

$H ; (s_1; s_2); s_3 \rightarrow^n H' ; (s'_1; s_2); s_3$ or (2) $H ; (s_1; s_2); s_3 \rightarrow^n H' ; s'$.

Lemma implies theorem: It’s stronger because if s' is skip, then only (2) applies and we have $H'' = H'$ and $n' = n$.

Proof of lemma: Tedious (will post for the curious).
Language Equivalence Example

IMP w/o multiply:

<table>
<thead>
<tr>
<th>CONST</th>
<th>VAR</th>
<th>ADD</th>
</tr>
</thead>
</table>
| $H ; c \downarrow c$ | $H ; x \downarrow H(x)$ | $H ; e_1 \downarrow c_1$ $H ; e_2 \downarrow c_2$ $H ; e_1 + e_2 \downarrow c_1 + c_2$

IMP w/o multiply small-step:

<table>
<thead>
<tr>
<th>SVAR</th>
<th>SADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H ; x \rightarrow H(x)$</td>
<td>$H ; c_1 + c_2 \rightarrow c_1 + c_2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SLEFT</th>
<th>SRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H ; e_1 \rightarrow e'_1$</td>
<td>$H ; e_2 \rightarrow e'_2$</td>
</tr>
<tr>
<td>$H ; e_1 + e_2 \rightarrow e'_1 + e_2$</td>
<td>$H ; e_1 + e_2 \rightarrow e_1 + e'_2$</td>
</tr>
</tbody>
</table>

Theorem: Semantics are equivalent, i.e., $H ; e \downarrow c$ if and only if $H ; e \rightarrow^* c$.

Proof: We prove the two directions separately.
Proof, part 1:

First assume $H; e \Downarrow c$; show $\exists n. H; e \rightarrow^n c$.

Lemma (prove it!): If $H; e \rightarrow^n e'$, then $H; e_1 + e \rightarrow^n e_1 + e'$ and $H; e + e_2 \rightarrow^n e' + e_2$. (Proof uses sleft and sright.)

Given the lemma, prove by induction on height h of derivation of $H; e \Downarrow c$:

- $h = 1$: Derivation is via CONST (so $H; e \rightarrow^0 c$) or VAR (so $H; e \rightarrow^1 c$).

- $h > 1$: Derivation ends with ADD, so e has the form $e_1 + e_2$, $H; e_1 \Downarrow c_1$, $H; e_2 \Downarrow c_2$, and c is $c_1 + c_2$.

 By induction $\exists n_1, n_2. H; e_1 \rightarrow^{n_1} c_1$ and $H; e_2 \rightarrow^{n_2} c_2$.
 So by our lemma $H; e_1 + e_2 \rightarrow^{n_1} c_1 + e_2$ and $H; c_1 + e_2 \rightarrow^{n_2} c_1 + c_2$.
 So sadd lets us derive $H; e_1 + e_2 \rightarrow^{n_1+n_2+1} c$.
Proof, part 2:

Now assume $\exists n. \ H; \ e \rightarrow^n c$; show $H ; e \Downarrow c$. By induction on n:

- $n = 0$: e is c and CONST lets us derive $H ; c \Downarrow c$.

- $n > 0$: $\exists e'$. $H; \ e \rightarrow e'$ and $H; \ e' \rightarrow^{n-1} c$.
 By induction $H ; e' \Downarrow c$.

So this lemma suffices: If $H; \ e \rightarrow e'$ and $H ; e' \Downarrow c$, then $H ; e \Downarrow c$.

Prove the lemma by induction on height h of derivation of $H; \ e \rightarrow e'$:

- $h = 1$: Derivation ends with SVAR (so $e' = c = H(x)$ and VAR gives $H ; x \Downarrow H(x)$) or with SADD (so e is some $c_1 + c_2$ and $e' = c = c_1 + c_2$ and ADD gives $H ; c_1 + c_2 \Downarrow c_1 + c_2$).

- $h > 1$: Derivation ends with SLEFT or SRIGHT ...
Proof, part 2 continued:

If e has the form $e_1 + e_2$ and e' has the form $e'_1 + e_2$, then the assumed derivations end like this:

\[
\begin{align*}
H ; e_1 \rightarrow e'_1 & \quad \frac{H ; e_1 \rightarrow e'_1}{H ; e_1 + e_2 \rightarrow e'_1 + e_2} \\
H ; e'_1 \downarrow c_1 & \quad \frac{H ; e_2 \downarrow c_2}{H ; e'_1 + e_2 \downarrow c_1 + c_2}
\end{align*}
\]

Using $H ; e_1 \rightarrow e'_1$, $H ; e'_1 \downarrow c_1$, and the induction hypothesis, $H ; e_1 \downarrow c_1$. Using this fact, $H ; e_2 \downarrow c_2$, and ADD, we can derive $H ; e_1 + e_2 \downarrow c_1 + c_2$.

(If e has the form $e_1 + e_2$ and e' has the form $e_1 + e'_2$, the argument is analogous to the previous case (prove it!).)
Conclusions

- Equivalence is a subtle concept.
- Proofs “seem obvious” only when the definitions are right.
- Some other language-equivalence claims:
 Replace WHILE rule with
 \[
 \begin{align*}
 H ; e \Downarrow c & \quad c \leq 0 \\
 H ; \text{while} \; e \; s \rightarrow H ; \text{skip} \\
 H ; e \Downarrow c & \quad c > 0 \\
 H ; \text{while} \; e \; s \rightarrow H ; s ; \text{while} \; e \; s
 \end{align*}
 \]
 Theorem: Languages are equivalent. (True)
 Change syntax of heap and replace ASSIGN and VAR rules with
 \[
 \begin{align*}
 H ; x := e \rightarrow H, x \leftrightarrow e ; \text{skip} \\
 H ; H(x) \Downarrow c
 \end{align*}
 \]
 Theorem: Languages are equivalent. (False)