
'

&

$

%

CSE 505: Concepts of Programming Languages

Dan Grossman

Fall 2005

Lecture 18

A Biased Pocket-Guide to the PL Universe

Dan Grossman CSE505 Fall 2005, Lecture 18 1

'

&

$

%

79.5 Minutes of PL left

• Review and highlights of what we did and did not do:

1. Semantics

2. Encodings

3. Language Features

4. Types

5. Metatheory

• What the WASP group has been up to that relates to 505

Actually, the field is at least half “language implementation” but

that’s 501 not 505. (If you want to know how compilers deal with

something, come ask me.)

Dan Grossman CSE505 Fall 2005, Lecture 18 2

'

&

$

%

Review of Basic Concepts

Semantics matters!

We must reason about what software does and does not do, if

implementations are correct, and if changes preserve meaning.

So we need a precise meaning for programs.

Do it once: Give a semantics for all programs in a language. (Infinite

number, so use induction for syntax and semantics)

Real languages are big, so build a smaller model. Key simplifications:

• Abstract syntax

• Omitted language features

Danger: not considering related features at once

Dan Grossman CSE505 Fall 2005, Lecture 18 3

'

&

$

%

Operational Semantics

An interpreter can use rewriting to transform a program state to

another one (or an immediate answer).

When our interpreter is written in the metalanguage of a judgment

with inference rules, we have an “operational semantics”.

This metalanguage is convenient (instantiating rule schemas),

especially for proofs (induction on derivation height).

Omitted: Automated checking of judgments and proofs.

• Proofs by hand are wrong.

• Proofs about ML programs are too hard.

• See Twelf, Coq, . . .

• (informal reading group next quarter; talk to Marius)

Dan Grossman CSE505 Fall 2005, Lecture 18 4

'

&

$

%

Denotational Semantics

A compiler can give semantics as translation plus semantics-of-target.

If the target-language and meta-language are math, this is

denotational semantics.

Can lead to elegant proofs, exploiting centuries of work, and treating

code as math is “the right thing to do”.

But building models is really hard!

Omitted: Denotation of while-loops (need recursion-theory),

denotation of lambda-calculus (maps of environments? can avoid

recursion in typed setting).

Meaning-preserving translation is compiler-correctness...

Dan Grossman CSE505 Fall 2005, Lecture 18 5

'

&

$

%

Rhodium in one slide

Again, compiler-correctness is meaning-preserving translation.

For optimization, source and target are same language.

If an optimization:

• is written in a restricted meta-language

• uses a trusted engine for computing what’s legal

• is connected to the semantics of the language

Then an automated theorem prover can show “once and for all” that

an optimization is correct.

Sorin will defend next month and go to UCSD.

Erika is making the optimizations easier to write by automatically

generating the “boring cases”.

Dan Grossman CSE505 Fall 2005, Lecture 18 6

'

&

$

%

Other Semantics

• Axiomatic Semantics: A program is a query-engine. Keywords:

weakest-preconditions, Hoare triples, A program means what

you can prove about it.

• Game Semantics: A program is its interaction with the context.

To “win”, it “produces an answer”. (Less mature idea; seems

useful for dealing with the all-important context.)

Useful?

• Standard ML has an impressive, small (few dozen pages) formal

semantics.

• Caml has an implementation.

• Standards bodies write boat anchors.

• Recent success: Wadler and XML queries.

Dan Grossman CSE505 Fall 2005, Lecture 18 7

'

&

$

%

Encodings

Our small models aren’t so small if we can encode other features as

derived forms.

Example: pairs in lambda-calculus, triples as pairs, . . .

“Syntactic sugar” is a key concept in language-definition and

language-implementation.

But special-cases are important too.

• Example: if-then-else in Caml.

• I do not know how to answer this design question.

Omitted: Church numerals, equivalence proofs, etc.

Dan Grossman CSE505 Fall 2005, Lecture 18 8

'

&

$

%

Fancy encoding: Continuation-Passing Style

There is a smaller λ-calculus:

e ::= x | λx. e | e y | e (λx. e′) | e c

That is, the right-side of an application is always a value or variable

(i.e., computed in O(1) time and space).

Evaluation stays in this (sub)language!

So inductively we don’t need a stack (every decurried call is a tail-call)!

And there’s a translation from the full λ-calculus to this sublanguage!!

A term of type τ1 → τ2 translates to one of type

τ1 → (τ2 → τans) → τans , i.e., a “foo” becomes a λ that (takes a

λ that takes a “foo” and finishes-the-program) and

finishes-the-program.

At the end of the day, e and (translate(e))(λx. x) are equivalent.

Dan Grossman CSE505 Fall 2005, Lecture 18 9

'

&

$

%

That word!

The definition of translate(e) is short but mind-bending.

We have seen continuations (homework 4) and continuation-passing

style (last slide).

If our source language has letcc and throw, we can extend translate

even though the target language doesn’t!

And letcc and throw are O(1) operations!

Roughly, the translation is turning every context into a λ, so:

• We don’t need a stack (there’s a λ that encodes it)

• Letcc just binds the right λ to the right variable

• Throw just calls a different λ than we otherwise would

This translation is important in theory and at the core of SML/NJ.

Dan Grossman CSE505 Fall 2005, Lecture 18 10

'

&

$

%

Language Features

We studied many features: assignment, loops, scope, higher-order

functions, tuples, records, variants, first-class references, exceptions,

objects, constructors, multimethods, . . .

We demonstrated some good design principles:

• Bindings should permit systematic renaming (α-conversion)

• Constructs should be first-class

(permit abstraction and abbreviation using full power of language)

• Constructs have intro and elim forms

• Eager vs. lazy (evaluation order, thunking)

We saw datatypes and classes better support different flavors of

extensibility. Keunwoo’s thesis is on supporting both in the presence of

parameterized modules.

Dan Grossman CSE505 Fall 2005, Lecture 18 11

'

&

$

%

More on first-class

We didn’t emphasize enough the convenience of first-class status: any

construct can be passed to a function, stored in a data structure, etc.

Example: We can apply functions to computed arguments (f(e) as

opposed to f(x)). But in YFL, can you:

• Compute the function e′(e)

• Pass arguments of any type (e.g., other functions)

• Compute argument lists (cf. Java, Scheme, ML)

• Pass operators (e.g., +)

• Pass projections (e.g., .l)

1st-class allows parameterization; every language has limits

Dan Grossman CSE505 Fall 2005, Lecture 18 12

'

&

$

%

Omitted feature: Arrays

An array is a pretty simple feature we just never bothered with:

• introduction form (make-array function of a length and an initial

value (or function for computing it))

• elimination forms (subscript and update), may get stuck (or cost

the economy billions if it’s C)

Why do languages have arrays and records?

• Arrays allow 1st-class lengths and index-expressions

• Records have fields with different types

Nice to have the vocabulary we need!

Dan Grossman CSE505 Fall 2005, Lecture 18 13

'

&

$

%

Omitted feature: Macros

We deemed syntax “uninteresting” only because the parsing problem is

solved.

• Grammars admitting fast automated parsers an amazing success

• Gives rigorous technical reasons to despise deviations

(e.g., typedef in C)

But syntax extensions (e.g., macros) are now understood as more than

textual substitution

• Always was (strings, comments, etc.)

• Macro hygiene (related to capture) crucial, rare, and sometimes

not what you want.

• Not a closed area

Dan Grossman CSE505 Fall 2005, Lecture 18 14

'

&

$

%

Semi-omitted feature: Threads

On the homework we investigated:

• Threads and locks formally

• join and condition variables informally

Concurrent programs have two common sources of errors sequential

programs don’t:

• Races (unsynchronized access to shared data)

• Deadlock (threads stuck waiting for locks)

For the last 10 years or so, much exciting work on PL tools (e.g., type

systems) to reduce these errors.

Now many of us are excited about atomicity (others like Peter-Michael

are excited about chords).

Dan Grossman CSE505 Fall 2005, Lecture 18 15

'

&

$

%

Atomicity

Atomic is an easier-to-use and harder-to-implement concurrency

primitive:

atomic : (unit->’a)->’a

Execute its argument as though no other thread has interleaved

execution, but maintain fair scheduling.

Mike Ringenburg: Caml with atomicity, particularly efficient because

Caml has little mutation and runs only one thread at a time

Ben Hindman: Java with atomicity, via source-to-source translation

(with lots of fancy OO tricks), performance will hopefully be tolerable

(Lots of work left to do on the latter.)

Omitted: 15 minutes on why atomic is better than locks.

Dan Grossman CSE505 Fall 2005, Lecture 18 16

'

&

$

%

Omitted feature: Unification

Some languages do search for you using unification

append([], X, X)

append(cons(H,T), X, cons(H,Y)) :- append(T, X, Y)

append(cons(1,cons(2,null)), cons(3,null), Z)

append(W, cons(4,null), cons(5,cons(4,null)))

• More than one rule can apply (leads to search)

• Must instantiate rules with same terms for same variables.

Sound familiar? Very close connection with our meta-language of

inference rules. Our “theory” can be a programming paradigm!

Dan Grossman CSE505 Fall 2005, Lecture 18 17

'

&

$

%

More omitted features: Haskell coolness

Some functional languages (most notably Haskell) have call-by-need

semantics for function application.

Haskell is also purely functional, moving any effects (exceptions, I/O,

references) to a layer above using something called monads. So at the

core level, you know (f x)*2 and (f x)+(f x) are equivalent.

Haskell also has type classes which allow you to constrain type

variables via “interfaces”.

Dan Grossman CSE505 Fall 2005, Lecture 18 18

'

&

$

%

Omitted features summary

I’m sure there are more:

1. Arrays

2. Macros

3. Threads

4. Unification

5. Lazy evaluation (another name for call-by-need)

6. Monads

7. Type classes

Dan Grossman CSE505 Fall 2005, Lecture 18 19

'

&

$

%

Types

(You should know I’m called a “types person”)

• A type system can prevent bad operations (so safe

implementations need not include run-time checks)

• I program fast in ML because I rely on type-checking

• “Getting stuck” is undecidable so decidable type systems rule out

good programs (to be sound rather than complete)

– May need new language constructs (e.g., fix in STLC)

– May require code duplication (hence polymorphism)

– A balancing act to avoid the Pascal-array debacle

Safety = Preservation + Progress (an invariant is preserved and if

the invariant holds you’re not stuck) is a general phenomenon.

Dan Grossman CSE505 Fall 2005, Lecture 18 20

'

&

$

%

Just an approximation

There are other approaches to describing/checking decidable

properties of programs:

• Dataflow analysis (plus: more convenient for flow-sensitive, minus:

less convenient for higher-order); see 501 Chambers, Winter 06

and Nathan’s work on a “flow engine”

• Abstract interpretation (plus: defined very generally, minus:

defined very generally)

• Model-checking see special course, Qadeer (MSR), Spring 06

Zealots of each approach (including types) emphasize they’re more

general than the others.

Types as “abstract interpretation” example: (3) = int (4) = int

(+) = fun x,y. if x=int and y=int then int else fail

Typechecks if abstract-interpretation does not produce “fail”

Dan Grossman CSE505 Fall 2005, Lecture 18 21

'

&

$

%

Polymorphism

If every term has one simple type, you have to duplicate too much

code (can’t write a list-library).

Subtyping allows subsumption. A subtyping rule that makes a safe

language unsafe is wrong.

Type variables allow an incomparable amount of power. They also let

us encode strong-abstractions, the end-goal of modularity and security.

Ad-hoc polymorphism (static-overloading) saves some keystrokes.

Note: In C, casts (subsumptions) are often “correct” only under

certain architectural assumptions. Marius is going to analyze your C

code and tell you what those assumption are.

Dan Grossman CSE505 Fall 2005, Lecture 18 22

'

&

$

%

Inference

Real languages allow you to omit more type information than our

formal typed languages.

Inference is elegant for some languages, impossible for others.

But the error messages are often bad because a small error may cause

a type problem “far away”.

Ben Lerner: Can we use search to find a “nearby” program that does

typecheck and show you the difference?

Dan Grossman CSE505 Fall 2005, Lecture 18 23

'

&

$

%

Metatheory

We studied many properties of our models, especially typed λ-calculi:

safety, termination, parametricity, erasure

Every type system we come up with corresponds to a logic and

vice-versa! (Constructive logic (no excluded middle) essential to

computation.)

Remember to be clear about what the question is!

Example: Erasure... Given the typed language, the untyped language,

and the erase meta-function, does erasure and evaluation commute?

Example: Subtyping decidable... Given a collection of inference rules

for ∆ τ̀1 ≤ τ2, does there exist an algorithm to decide (for all) ∆,

τ1 and τ2 whether a derivation of ∆ τ̀1 ≤ τ2 exists?

Dan Grossman CSE505 Fall 2005, Lecture 18 24

'

&

$

%

Other models

We studied two models in depth: IMP (intraprocedural manipulation

of global variables) and lambda-calculus (lexically-scoped higher-order

functions).

There are good newer core models for other paradigms:

• π-calculus for communicating processes

– There are only channels (to send and recieve) and processes

– More primitive than λ because application becomes one send

and one receive

• σ-calculus for objects (late-binding)

• Also decades on denotational models of λ-calculi (terms are math

functions over environments)

Dan Grossman CSE505 Fall 2005, Lecture 18 25

'

&

$

%

Last Slide

• Languages and models of them follow guiding principles

• Now you can’t say I didn’t show you continuation-passing style

• We can apply this stuff to make software better!!

Defining program behavior is a key obligation of computer science.

Proving programs do not do “bad things” (e.g., violate safety) is a

“simpler” undecidable problem.

• A necessary condition for modularity

• Hard work (subtle interactions demand careful reasoning)

• Fun (get to write compilers and prove theorems)

You might have a PL issue in the next 5 years... I’m in CSE556.

Dan Grossman CSE505 Fall 2005, Lecture 18 26

