
'

&

$

%

CSE 505: Concepts of Programming Languages

Dan Grossman

Fall 2005

Lecture 15

Object-Oriented Programming

Dan Grossman CSE505 Fall 2005, Lecture 15 1



'

&

$

%

Don’t Believe the Hype

OOP provides concise ways to build extensible software and exploit a

sometimes-useful analogy between interaction of objects in physical

systems and interaction of software parts.

It also raises tricky semantic and style issues that require careful PL

investigation. (Good thing we’re doing it near the end!)

Personally, I am skeptical about:

• The coding factor (X lines/day of accessor methods!)

• The Barnes&Noble factor (certified insane in X days!)

• The intro factor (by week X you can write your own class!)

If it takes an advanced degree to understand objects, I’ve got the right

audience!

Dan Grossman CSE505 Fall 2005, Lecture 15 2



'

&

$

%

So what is OOP?
It seems to look like this. . . That’s a lot; what’s the essence?

class Point1 extends Object {

int x;

int get_x() { x }

unit set_x(int y) { self.x = y }

int distance(Point1 p) { p.get_x() - self.get_x() }

constructor() { x = 0; }

}

class Point2 extends Point1 {

int y;

int get_y() { y }

int get_x() { 34+super.get_x() }

constructor() { super(); y=0; }

}

Dan Grossman CSE505 Fall 2005, Lecture 15 3



'

&

$

%

OOP can mean many things

• An ADT (private fields)

• Subtyping

• Inheritance, method/field extension, method override

• Implicit this/self

• Dynamic dispatch

• All the above (plus constructor(s)) with 1 class declaration

Let’s consider how OO each of these is. . .

Side question: Is “good design” many combinable constructs or one

“do it all” construct?

Dan Grossman CSE505 Fall 2005, Lecture 15 4



'

&

$

%

OO as ADT-focused

Object/class members (fields, methods, constructors) often have

visibilities and “more private” is sort of “more abstract”

What code can invoke a method/access a field? Other methods in

same object, other methods in same class, a subclass, within some

other boundary (e.g., a package), any code, . . .

With just classes, the only other way to hide a member is upcasting.

With interfaces (which are more like record types), we can hide

members more selectively:

interface I { int distance(Point1 p); }

class Point1 { ... I f() { self } ... }

Previously we saw objects are a bad match for “strong binary

methods” (we’ll come back to this)

Dan Grossman CSE505 Fall 2005, Lecture 15 5



'

&

$

%

Records with private fields

Let’s assume all fields are visible only to self object. Then objects are

just a record of methods with private state.

So far, this is no need for a fancy OO language:

type t = { get_x : unit -> int;

set_x : int -> unit;

distance : t -> int }

let point1_constructor () =

let x = ref 0 in

let rec self =

{ get_x = (fun () -> !x);

set_x = (fun y -> x := y);

distance = (fun p -> p.get_x() - self.get_x() )

} in self

But there’s more to it (haven’t considered inheritance yet)

Dan Grossman CSE505 Fall 2005, Lecture 15 6



'

&

$

%

Subtyping

Most class-based OO languages “confuse” classes and types:

• If C is a class, then C is a type.

• If C extends D (via declaration), then C ≤ D.

• Subtyping is (only) the reflexive, transitive closure of this.

Is this novel? If C adds members, that’s width subtyping.

This is “by name” subtyping. If classes C1 and C2 are incomparable

in the class hierarchy they are incomparable types, even if they have

the same members.

We will definitely revisit this “subclassing is subtyping” assumption!

(For now, it restricts subtyping and subclassing!)

Dan Grossman CSE505 Fall 2005, Lecture 15 7



'

&

$

%

Subtyping, continued

If C extends D and overrides a method of D, what restrictions should

we have?

• Argument types contravariant (assume less about arguments)

• Result type covariant (provide more about result)

Many “real” languages are even more restrictive.

Some bend over backward to be more flexible. (Don’t!)

It’s good we studied this in a simpler setting.

Dan Grossman CSE505 Fall 2005, Lecture 15 8



'

&

$

%

Inheritance and Override

A subclass inherits the fields and methods of its superclass. It can

override some methods and have special “super” (a.k.a. resend) calls.

This isn’t hard in ML either, (if the type system let you reuse field

names):

let point1_constructor () =

let x = ref 0 in

let rec self =

{ get_x = (fun () -> !x);

set_x = (fun y -> x := y);

distance = (fun p -> p.get_x() - self.get_x() )

} in self

continued...

Dan Grossman CSE505 Fall 2005, Lecture 15 9



'

&

$

%

Continued...

let point2_constructor () =

let r = point1_constructor () in

let rec self =

{get_x = (fun () -> 34 + r.get_x());

distance = r.distance;

y = ref 0;

... } in self

Also have to change point2 code when point1 changes, but often true

in OO too (“fragile base class” issues).

Dan Grossman CSE505 Fall 2005, Lecture 15 10



'

&

$

%

Then what is it?

I claim class-based objects are poor (maybe okay) ADTs, same old

subtyping, and a little syntactic sugar for extension and override.

So what is that makes OO different in an intellectually interesting way?

Answer: The “late” binding of self and the dynamic dispatch that

results.

The difference between point2_constructor() and an object of

class Point2 is in the behavior of distance.

Dan Grossman CSE505 Fall 2005, Lecture 15 11



'

&

$

%

More on late binding

Late-binding, dynamic dispatch, and open recursion are all closely

related ideas. The simplest example I know:

Functional (even still O(n)) vs. OO (even now O(1)):

let c1() = let rec r = {

even i = if i > 0 then r.odd (i-1) else true;

odd i = if i > 0 then r.even (i-1) else false} in r

let c2() = let r1 = c1() in

let rec r = {even = r1.even; odd i = i % 2 == 1} in r

class C1 {

int even(int i) {if i>0 then odd(i-1) else true}

int odd(int i) {if i>0 then even(i-1) else false}}

class C2 extends C1 {

int odd(int i) {i % 2 == 1} }

Dan Grossman CSE505 Fall 2005, Lecture 15 12



'

&

$

%

Political Spin

“Call your congresspeople. Tell them C2 should have the right to

change even by overriding odd. It’s a question of code reuse and you

deserve better subclasses.”

“Call your congresspeople. Tell them C1.even shouldn’t break

whenever C2 decides to write a bad odd. You deserve quality code,

regardless of subclasses.”

Meanwhile, public television has a “boring” documentary about quiet

behind-the-scenes work to understand the approaches and how the

shortcomings of each can be compensated.

Dan Grossman CSE505 Fall 2005, Lecture 15 13



'

&

$

%

Where We’re Going

Now we know overriding and dynamic dispatch is the interesting part

of the expression language. Now:

• How exactly do we define method dispatch?

• How do we use overriding for extensible software?

• Revisiting “subtyping is subclassing”

– Why contra/covariance is useful

– Interfaces or object types for more subtyping

– Subclassing not subtyping for more code reuse

Dan Grossman CSE505 Fall 2005, Lecture 15 14



'

&

$

%

Defining Dispatch

We want correct definitions, not super-efficient compilation techniques.

Methods take “self” as an argument. (Compile down to functions

taking an extra argument.) So just need self to refer to right thing.

Approach 1: Each object has a “code pointer” for each method. For

object returned by new C() where C extends D, use code pointers for

D (inductive definition!) but:

• If C overrides f replace code pointer for f

• If C adds f, then add code pointer for f

See homework 5.

Dan Grossman CSE505 Fall 2005, Lecture 15 15



'

&

$

%

Dispatch continued

Approach 2: Each object has a “type tag”. Object returned by new

C() has tag C. Program state also has a “class table” mapping tags

and method-names to code. For dispatch, look up (tag,name) in table.

Approaches are equivalent, model dynamic dispatch correctly, and are

routinely formalized in PL papers.

First approach is “more eager” and consumes more space.

Real implementations get best of both worlds with just a little more

complication.

Informal claim: This is hard to explain to freshmen, but in the

presence of overriding, no simpler definition is correct.

Dan Grossman CSE505 Fall 2005, Lecture 15 16



'

&

$

%

Overriding and Hierarchy Design

Subclass writer decides what to override to modify behavior. (Style:

Modification should be specialization, but language doesn’t check

that.)

Superclass writer often has ideas on what will be overridden.

Leads to abstract methods (must override) and abstract classes:

• An abstract class has > 0 abstract methods

• Overriding an abstract method makes it non-abstract

• Cannot call constructor of an abstract class

Adds no expressiveness (superclass could implement method to raise

an exception), but uses static checking to enforce an idiom and saves

you a handful of keystrokes.

Dan Grossman CSE505 Fall 2005, Lecture 15 17



'

&

$

%

Overriding for Extensibility

A PL example:

class Exp {

abstract Value eval(Env);

abstract Typ typecheck(Ctxt);

}

class IntExp extends class Exp {

Int i;

Value eval(Env e) { new IntValue(self.i) }

Typ typecheck(Ctxt c) { new IntTyp() }

}

Dan Grossman CSE505 Fall 2005, Lecture 15 18



'

&

$

%

Example Continued
class AddExp extends class Exp {

Exp e1; Exp e2;

Value eval(Env e) {

new IntValue(e1.eval(e).toInt().add(

e2.eval(e).toInt())); }

Typ typecheck(Ctxt c) {

if(e1.typecheck(c).equals(new IntTyp()) &&

e2.typecheck(c).equals(new IntTyp()))

new IntTyp()

else raise new TypeError() }

}

toInt may raise an exception (Value definition not shown)

“Impure” OO may have a plus primitive (not a method call)

Dan Grossman CSE505 Fall 2005, Lecture 15 19



'

&

$

%

Extending the example

If we add a new variant of expression (e.g., MultExp) we need not

change any existing code. In ML-style, we do.

If we add a new operation (e.g., toString) we need to change Exp

and all subclasses. In ML, no change to existing code.

If we add a new type of value (e.g., Bool):

• ML patterns need new case but _ may avoid it

• Value subclasses need new method (e.g., toBool) but concrete

method in superclass (to raise an exception) may localize the

change.

Extensibility has many dimensions — most require forethought! (Some

work at UW on allowing OO and FP style extension)

Dan Grossman CSE505 Fall 2005, Lecture 15 20



'

&

$

%

Yet more example

Now consider actually adding MultExp.

If you have MultExp extend Exp, you will copy typecheck from

AddExp.

If you have MultExp extend AddExp, you don’t copy. The AddExp

implementer was not expecting that. May be brittle; generally

considered bad style.

Best (?) of both worlds by refactoring with an abstract BinIntExp

class implementing typecheck. So we choose to change AddExp

when we add MultExp.

This intermediate class is a fairly heavyweight way to use a helper

function.

Dan Grossman CSE505 Fall 2005, Lecture 15 21



'

&

$

%

Revisiting Subclassing is Subtyping

Recall we have been “confusing” classes and types: C is a class and a

type and if C extends D then C is a subtype of D.

Therefore, if C overrides f, the type of f in C must be a subtype of

the type of f in D. Just like functions, method-subtyping is

contravariant arguments and covariant results.

If code knows it has a C, it can call f with “more” arguments and

know there are “fewer” results.

Dan Grossman CSE505 Fall 2005, Lecture 15 22



'

&

$

%

Subtyping and Dynamic Dispatch

We defined dynamic dispatch in terms of functions taking self as an

argument.

But unlike other arguments, self is covariant! (Else overriding method

couldn’t access new fields/methods.)

This is sound because self must be passed, not another value with the

supertype.

This is the key reason encoding OO in a typed λ-calculus requires

ingenuity, fancy types, and/or run-time cost. (We won’t even attempt

it.)

Dan Grossman CSE505 Fall 2005, Lecture 15 23



'

&

$

%

More subtyping

With single-inheritance and the class/type confusion, we don’t get all

the subtyping we want. Example: Taking any object that has an f

method from int to int.

Interfaces help somewhat, but class declarations must still say they

implement an interface.

Object-types bring the flexibility of structural subtyping to OO. For

example, class Exp has a type with two methods (certain names,

certain types) and several supertypes (fewer methods, methods taking

more restricted arguments, etc.)

With object-types, “subclassing implies subtyping”

Dan Grossman CSE505 Fall 2005, Lecture 15 24



'

&

$

%

More subclassing

Breaking one direction of “subclassing = subtyping” allowed more

subtyping (so more code reuse).

Breaking the other direction (“subclassing does not imply subtyping”)

allows more inheritance (so more code reuse).

Simple idea: If C extends D and overrides a method in a way that

makes C ≤ D unsound, then C 6≤ D. This is useful:

class P1 { ... Int get_x(); Int compare(P1); ... }

class P2 extends Point1 { ... Int compare(P2); ... }

Dan Grossman CSE505 Fall 2005, Lecture 15 25



'

&

$

%

Where we are

Summary of last 4 slides: Separating types and classes expands the

language, but clarifies the concepts:

• Typing is about interfaces, subtyping about wider interfaces

• Inheritance is about code-sharing

Combining typing and inheritance restricts both.

Where we are going: multiple inheritance, multiple dispatch, bounded

polymorphism, classless OO languages, a primitive-calculus.

Dan Grossman CSE505 Fall 2005, Lecture 15 26


