
'

&

$

%

CSE 505: Concepts of Programming Languages

Dan Grossman

Fall 2005

Lecture 14

Polymorphism Wrap-up; Exceptions; References;

Polymorphic References; C-Style Pointers

Dan Grossman CSE505 Fall 2005, Lecture 14 1

'

&

$

%

Where are we
Done investigating subtyping and type variables:

• Both forms of polymorphism permit code reuse and abstraction

– Reuse: Same code for multiple types

– Abstraction: Code has references to data it cannot use

arbitrarily

– Abstraction broken by downcasts or instanceof

• Different idioms best supported by subsumption or type variables.

• Recursive types also use α, for a different purpose:

– But reused subsumption machinery for “equal to unrolling”

– But reused type-variable machinery for “unrolling is type

substitution”

Today: Exceptions and mutable references

Dan Grossman CSE505 Fall 2005, Lecture 14 2

'

&

$

%

Exceptions

Defining raise (a.k.a. throw) and try is straightforward if a bit

cumbersome. Key ideas:

• Can define a raise as “bubbling up” to a matching catch.

• Hierarchical exceptions affect whether a catch matches (not in

ML).

– Fits in nicely with class-based OOP (coming soon).

• Types in ML typically do not mention possible exceptions; types in

Java sort of do.

Dan Grossman CSE505 Fall 2005, Lecture 14 3

'

&

$

%

Operational Semantics

Let’s model exceptions with just integers for now:

e ::= ... | raise e | try e catch (c) e

Rules for new constructs:

e → e′

raise e → raise e′

e1 → e′
1

try e1 catch (c) e2 → try e′
1 catch (c) e2

try v catch (c) e2 → v try raise c catch (c) e2 → e2

c 6= c′

try raise c′ catch (c) e2 → raise c′

Dan Grossman CSE505 Fall 2005, Lecture 14 4

'

&

$

%

More Bubbles

And lots more bubble-up rules (can avoid this with a list of evaluation

contexts). Examples:

(raise c) e → raise c v (raise c) → raise c

(raise c, e) → raise c (v, raise c) → raise c

Final result may be a v or an uncaught exception raise c

Efficiency note: Some compilers do raise in O(1), but not a big deal to

take O(n) to pop off stack of size n since you built it in time O(n).

Continuations note: letcc can restore an old stack, exceptions can’t.

Dan Grossman CSE505 Fall 2005, Lecture 14 5

'

&

$

%

Typing Exceptions

ML-style typing of exceptions (though still just integers):

∆; Γ ` e : int ∆ τ̀

∆; Γ ` raise e : τ

∆; Γ ` e1 : τ ∆; Γ ` e2 : τ

∆; Γ ` try e1 catch (c) e2 : τ

Safety caveat: Any expression of type τ might evaluate to raise c.

Try-rule is like an if (strange-looking only if you’re used to e1 and e2

being “statements” (i.e., of type unit)).

Dan Grossman CSE505 Fall 2005, Lecture 14 6

'

&

$

%

Carrying Values

If we change exceptions to carry a pair of an integer and another

value, we’re more like ML (or Java):

• The integer tag is the constructor (the class).

• The other value is the carried-value (the fields).

But the exn type is unlike other datatypes: Any file can add new

constructors so no file can know them all!

Called an extensible datatype; makes exhaustiveness impossible.

Cannot reuse tags or could violate type-safety!

Implementation is clever: represent constructors not with integers per

se, but with addresses — the linker guarantees uniqueness!

Dan Grossman CSE505 Fall 2005, Lecture 14 7

'

&

$

%

Mutable References

We had mutable variables in lecture 2; what’s different now:

• Not all data is integers: mutable location can hold pairs,

functions, other mutable locations, etc.

• We can create new references at run-time.

• We have types, including type variables and subtyping.

• We sometimes have termination.

References take extreme care.

They mess up many of our nice properties, but we are type-safe if we

are careful.

Dan Grossman CSE505 Fall 2005, Lecture 14 8

'

&

$

%

ML-style references

For now, let’s take the ML approach:

• Variables are not mutable.

• References are (pointers to) mutable things; dereference is explicit.

e ::= ... | ref e | !e | e1 := e2

But our operational semantics needs a heap and reference-values

(a.k.a. addresses):

e ::= ... | r

v ::= ... | r

H ::= · | H, r 7→ v

A program state is now (H; e) so all our old rules change. Examples:

H; (λx. e) v → (H; e[v/x])

H; e1 → H ′; e′
1

H; e1 e2 → (H ′; e′
1 e2)

Dan Grossman CSE505 Fall 2005, Lecture 14 9

'

&

$

%

Interesting Rules

The rules for our new non-value expressions affect the heap.

r 6∈ Dom(H)

(H; ref v) → (H, r 7→ v; r) (H; !r) → (H; H(r))

(H; r := v) → (H, r 7→ v; ())

(4 new boring rules omitted)

Dan Grossman CSE505 Fall 2005, Lecture 14 10

'

&

$

%

Typing

A reference holding a τ is not a τ ; the former supports (only)

dereference and assignment; the latter does not.

τ ::= ... | τ ref

Just 3 new typing rules for your type-checker:

∆; Γ ` e : τ

∆; Γ ` ref e : τ ref

∆; Γ ` e : τ ref

∆; Γ ` !e : τ

∆; Γ ` e1 : τ ref ∆; Γ ` e2 : τ

∆; Γ ` e1 := e2 : unit

This is safe, but the Preservation proof won’t go through!

Dan Grossman CSE505 Fall 2005, Lecture 14 11

'

&

$

%

Preservation and States
In practice you write your type-checker only for source programs.

But Preservation requires type-checking states (details not so crucial).

So extend the type system just for the proof to include reference

values and heaps:

Γ ::= ... | r:τ

∆; Γ ` e : τ Γ1 `H : Γ2 `H; e

∆; Γ ` r : (Γ(r)) ref Γ ·̀ : ·
Γ `H : Γ′ ·; Γ ` v : τ

Γ `H, r 7→ v : Γ′, r:τ

Γ `H : Γ ·; Γ ` e : τ

`H; e

(Above has a technical trick to allow cycles in the heap.)

Dan Grossman CSE505 Fall 2005, Lecture 14 12

'

&

$

%

Preservation and States

Preservation: If ·; Γ ` e : τ and Γ `H : Γ and H; e → H ′; e′, then

there exists a Γ′ such that ·; Γ′ ` e′ : τ and Γ′ `H ′ : Γ′

and Γ′ is an extension of Γ (crucial for induction).

Note: Every step via a “boring rule” requires Weakening because the

heap might get bigger.

In this math is a key idea: safety requires type-invariance of the heap...

As program runs, new heap locations can arrive and old locations can

change value, but no location ever changes type! If it did, the program

state might not type-check anymore.

Dan Grossman CSE505 Fall 2005, Lecture 14 13

'

&

$

%

All done?

That’s about all there is to say about references, except how they

interact (badly) with everything else:

• Subtyping

• Parametric polymorphism

• Termination in the absence of µ or fix

• Parametricity

Then: We can take a C/Java approach to formalizing mutable

locations by distinguishing “left-evaluation” from “right-evaluation”.

Dan Grossman CSE505 Fall 2005, Lecture 14 14

'

&

$

%

Subtyping

For subtyping, when should we allow τ ref ≤ τ ′ ref?

Allow covariance (τ ≤ τ ′ ⇒ τ ref ≤ τ ′ ref)?

let x : {.l1:int, .l2:int} ref = ref {.l1=0, .l2=0} in

x := {.l1=0}; (* subsume left-side *)

(!x.l2)

Allow contravariance (τ ′ ≤ τ ⇒ τ ref ≤ τ ′ ref)?

let x : {.l1:int} ref = ref {.l1=0} in

let y : {.l1:int,.l2:int} ref = x in (* subsume x *)

(!y.l2)

Reference types are invariant (common mistake)!!!

τ1 ≤ τ2 τ2 ≤ τ1

τ1 ref ≤ τ2 ref

Dan Grossman CSE505 Fall 2005, Lecture 14 15

'

&

$

%

Universal types

let x : forall ‘a. ((‘a list) ref) = ref [] in

x [int] := 1::[];

match !(x [string]) with hd::tl -> hd ^ "gotcha!" | _ -> ()

We must reject something in this example!

• ML solution: Do not let ref [] have a polymorphic type.

– But a library can “hide” the ref type

(type ’a foo = ’a ref), so make all function applications

have non-polymorphic types (the “value restriction”).

• Several other solutions exist. (Example: Only let (immutable)

functions have polymorphic types, but then [] cannot have a

polymorphic type.)

Dan Grossman CSE505 Fall 2005, Lecture 14 16

'

&

$

%

Termination

For Turing-completeness all you need is simply-typed λ calculus plus

references.

Here’s an infinite loop that type-checks:

let x : (int->int) ref = ref (fn y -> y) in

let f : (int->int) = (fn y -> (!x) y) in

x := f;

f 0

It’s pretty easy to encode arbitrary recursion this way.

After all, it’s just like back-patching in an assembler!

Dan Grossman CSE505 Fall 2005, Lecture 14 17

'

&

$

%

Parametricity

True: In System F with references, If f has type ∀α.int → α → int,

then f [τ1] c v1 and f [τ2] c v2 always have the same behavior.

False: In System F with references, If f has type

∀α.(int ref) → (α ref) → int, then f [τ1] r1 r2 and f [τ2] r1 r3

always have the same behavior.

Dan Grossman CSE505 Fall 2005, Lecture 14 18

'

&

$

%

Where are we
Investigated mutation in a language much more real than IMP.

Used the ML approach: distinguish references from immutable things:

• So variables still “map to values”

• And the type-checker just treats references as a library:

type ’a ref;

val ref : ’a -> ’a ref;

val ! : ’a ref -> ’a;

val := : ’a ref -> ’a -> unit

Which does not quite work without the value restriction

In C, C++, Java, etc.:

• “Every variable is a reference”

• In certain positions “the dereference is implicit”

Dan Grossman CSE505 Fall 2005, Lecture 14 19

'

&

$

%

Formalizing C-style pointers

(Note: Most researchers never do it this way, but I find it useful.)

τ ::= int | τ∗
e ::= c | x | e = e | ∗e | &e | e; e

v ::= c | &x

H ::= · | H, x 7→ v

For simplicity, large-step semantics:

H; e ⇓R H ′; v H; e ⇓L H ′; x

The judgments are inter-related

(i.e., the interpreter uses mutual recursion).

Dan Grossman CSE505 Fall 2005, Lecture 14 20

'

&

$

%

The Rules

H; c ⇓R H; c H; x ⇓R H; H(x)

H; e1 ⇓L H ′; x H ′; e2 ⇓R H ′′; v

H; e1 = e2 ⇓R H ′′, x 7→ v; v

H; e ⇓R H ′; &x

H; ∗e ⇓R H ′; H ′(x)

H; e ⇓L H ′; x

H; &e ⇓R H ′; &x

H; e1 ⇓R H ′; v1 H ′; e2 ⇓R H ′′; v2

H; e1; e2 ⇓R H ′′; v2

H; x ⇓L H; x

H; e ⇓R H ′; &x

H; ∗e ⇓L H ′; x

Dan Grossman CSE505 Fall 2005, Lecture 14 21

'

&

$

%

C Revealed
C expressions according to Dan:

• Right expressions evaluate to values.

• Left expressions evaluate to locations.

• Right expressions have implicit lookup; left expressions don’t.

• & turns a left expression into a right expression.

• * (can) turn a right expression into a left expression.

Opinion:

• This slide (not the last one) is how to teach C (to sophomores).

• People have an irrational hatred of &.

• They should rationally hate it because it introduces dangling

pointers and, more generally, creates aliases where it looks like

there are not any.

Dan Grossman CSE505 Fall 2005, Lecture 14 22

